2,340 research outputs found

    Abundances of Suprathermal Heavy Ions in CIRs during the Minimum of Solar Cycle 23

    Full text link
    In this paper we examine the elemental composition of the 0.1-1 MeV/nucleon interplanetary heavy ions from H to Fe in corotating interaction regions (CIRs) measured by the SIT (Suprathermal Ion Telescope) instrument. We use observations taken on board the STEREO spacecraft from January 2007 through December 2010, which included the unusually long solar minimum following solar cycle 23. During this period instruments on STEREO observed more than 50 CIR events making it possible to investigate CIR ion abundances during solar minimum conditions with unprecedented high statistics. The observations reveal annual variations of relative ion abundances in the CIRs during the 2007-2008 period as indicated by the He/H, He/O and Fe/O elemental ratios. We discuss possible causes of the variability in terms of the helium focusing cone passage and heliolatitude dependence. The year 2009 was very quiet in CIR event activity. In 2010 the elemental composition in CIRs were influenced by sporadic solar energetic particle (SEP) events. The 2010 He/H and He/O abundance ratios in CIRs show large event to event variations with values resembling the SEP-like composition. This finding points out that the suprathermal SEPs could be the source population for CIR acceleration.Comment: accepted for publication in Solar Physic

    3He-rich SEP Events Observed by STEREO-A

    Full text link
    Using the SIT (Suprathermal Ion Telescope) instrument on STEREO-A we have examined the abundance of the rare isotope 3He during the rising activity phase of solar cycle 24 between January 2010 and December 2011. We have identified six solar energetic particle (SEP) events with enormous abundance enhancements of 3He (3He/4He >1). The events were short lasting, typically ~0.5-1 day and most of them occurred in association with high-speed solar wind streams and corotating interaction regions. With one exception the events were not associated with ~100 keV solar electron intensity increases. The events showed also enhanced NeS/O and Fe/O ratios. The solar images indicate that the events were generally associated with the active regions located near a coronal hole.Comment: accepted for publication in AIP Conference Proceedings for 'Thirteenth International Solar Wind Conference

    Magnetic field configuration and field-aligned acceleration of energetic ions during substorm onsets

    No full text
    International audienceIn this paper, we present an interpretation of the observed field-aligned acceleration events measured by GEOS-2 near the night-side synchronous orbit at substorm onsets (Chen et al., 2000). We show that field-aligned acceleration of ions (with pitch angle asymmetry) is closely related to strong short-lived electric fields in the Ey direction. The acceleration is associated with either rapid dipolarization or further stretching of local magnetic field lines. Theoretical analysis suggests that a centrifugal mechanism is a likely candidate for the parallel energization. Equatorward or anti-equatorward energization occurs when the tail current sheet is thinner tailward or earthward of the spacecraft, respectively. The magnetic field topology leading to anti-equatorward energization corresponds to a situation where the near-Earth tail undergoes further compression and the inner edge of the plasma sheet extends inwards as close as the night-side geosynchronous altitudes

    Multi-Spacecraft Observations of Recurrent 3He-Rich Solar Energetic Particles

    Full text link
    We study the origin of 3He-rich solar energetic particles (<1 MeV/nucleon) that are observed consecutively on STEREO-B, ACE, and STEREO-A spacecraft when they are separated in heliolongitude by more than 90{\deg}. The 3He-rich period on STEREO-B and STEREO-A commences on 2011 July 1 and 2011 July 16, respectively. The ACE 3He-rich period consists of two sub-events starting on 2011 July 7 and 2011 July 9. We associate the STEREO-B July 1 and ACE July 7 3He-rich events with the same sizeable active region producing X-ray flares accompanied by prompt electron events, when it was near the west solar limb as seen from the respective spacecraft. The ACE July 9 and STEREO-A July 16 events were dispersionless with enormous 3He enrichment, lacking solar energetic electrons and occurring in corotating interaction regions. We associate these events with a small, recently emerged active region near the border of a low-latitude coronal hole that produced numerous jet-like emissions temporally correlated with type III radio bursts. For the first time we present observations of 1) solar regions with long-lasting conditions for 3He acceleration and 2) solar energetic 3He that is temporary confined/re-accelerated in interplanetary space.Comment: accepted for publication in The Astrophysical Journa

    Simultaneous effects on parvalbumin-positive interneuron and dopaminergic system development in a transgenic rat model for sporadic schizophrenia

    Get PDF
    To date, unequivocal neuroanatomical features have been demonstrated neither for sporadic nor for familial schizophrenia. Here, we investigated the neuroanatomical changes in a transgenic rat model for a subset of sporadic chronic mental illness (CMI), which modestly overexpresses human full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1), and for which aberrant dopamine homeostasis consistent with some schizophrenia phenotypes has previously been reported. Neuroanatomical analysis revealed a reduced density of dopaminergic neurons in the substantia nigra and reduced dopaminergic fibres in the striatum. Parvalbumin-positive interneuron occurrence in the somatosensory cortex was shifted from layers II/III to V/VI, and the number of calbindin-positive interneurons was slightly decreased. Reduced corpus callosum thickness confirmed trend-level observations from in vivo MRI and voxel-wise tensor based morphometry. These neuroanatomical changes help explain functional phenotypes of this animal model, some of which resemble changes observed in human schizophrenia post mortem brain tissues. Our findings also demonstrate how a single molecular factor, DISC1 overexpression or misassembly, can account for a variety of seemingly unrelated morphological phenotypes and thus provides a possible unifying explanation for similar findings observed in sporadic schizophrenia patients. Our anatomical investigation of a defined model for sporadic mental illness enables a clearer definition of neuroanatomical changes associated with subsets of human sporadic schizophrenia
    corecore