3,643 research outputs found

    Sputtered Tungsten Oxide as Hole Contact for Silicon Heterojunction Solar Cells

    Get PDF
    Reactively sputtered tungsten oxide WOx was investigated as hole contact on n type crystalline silicon. Varying the oxygen gas flow during sputtering enables variation of the WOx conductivity from 0.01 to 1000 amp; 937; cm, while the band bending at the interface and the implied fill factor FF change by 70 meV and 1.5 . SputteredWOx shows higher resistivity and higher absorption in the visible range compared with indium tin oxide ITO . Therefore, stacks of WOx and ITO are used in solar cells. It was found that at least 20 nm thick WOx is needed to prevent detrimental effects of the ITO work function on the band bending at the junction, the implied FF, and the real FF of solar cells. WOx hole contacts of different thicknesses and conductivity were applied in solar cells and it was found that the highest FF is achieved using about 20 nm thick interlayers of WOx with the highest possible conductivity. It was found that sputtering enables a drastic improvement of WOx silicon solar cells compared with thermal evaporation, due to the precise control of the WOx conductivity. Unfortunately, the resistivity of the sputteredWOx is still limiting the FF of these device

    Etched graphene quantum dots on hexagonal boron nitride

    Get PDF
    We report on the fabrication and characterization of etched graphene quantum dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island diameters. We perform a statistical analysis of Coulomb peak spacings over a wide energy range. For graphene QDs on hBN, the standard deviation of the normalized peak spacing distribution decreases with increasing QD diameter, whereas for QDs on SiO2 no diameter dependency is observed. In addition, QDs on hBN are more stable under the influence of perpendicular magnetic fields up to 9T. Both results indicate a substantially reduced substrate induced disorder potential in graphene QDs on hBN

    Buyback Problem - Approximate matroid intersection with cancellation costs

    Full text link
    In the buyback problem, an algorithm observes a sequence of bids and must decide whether to accept each bid at the moment it arrives, subject to some constraints on the set of accepted bids. Decisions to reject bids are irrevocable, whereas decisions to accept bids may be canceled at a cost that is a fixed fraction of the bid value. Previous to our work, deterministic and randomized algorithms were known when the constraint is a matroid constraint. We extend this and give a deterministic algorithm for the case when the constraint is an intersection of kk matroid constraints. We further prove a matching lower bound on the competitive ratio for this problem and extend our results to arbitrary downward closed set systems. This problem has applications to banner advertisement, semi-streaming, routing, load balancing and other problems where preemption or cancellation of previous allocations is allowed

    RNA secondary structure design

    Get PDF
    We consider the inverse-folding problem for RNA secondary structures: for a given (pseudo-knot-free) secondary structure find a sequence that has that structure as its ground state. If such a sequence exists, the structure is called designable. We implemented a branch-and-bound algorithm that is able to do an exhaustive search within the sequence space, i.e., gives an exact answer whether such a sequence exists. The bound required by the branch-and-bound algorithm are calculated by a dynamic programming algorithm. We consider different alphabet sizes and an ensemble of random structures, which we want to design. We find that for two letters almost none of these structures are designable. The designability improves for the three-letter case, but still a significant fraction of structures is undesignable. This changes when we look at the natural four-letter case with two pairs of complementary bases: undesignable structures are the exception, although they still exist. Finally, we also study the relation between designability and the algorithmic complexity of the branch-and-bound algorithm. Within the ensemble of structures, a high average degree of undesignability is correlated to a long time to prove that a given structure is (un-)designable. In the four-letter case, where the designability is high everywhere, the algorithmic complexity is highest in the region of naturally occurring RNA.Comment: 11 pages, 10 figure

    The Low Quiescent X-Ray Luminosity of the Transient X-Ray Burster EXO 1747-214

    Full text link
    We report on X-ray and optical observations of the X-ray burster EXO 1747-214. This source is an X-ray transient, and its only known outburst was observed in 1984-1985 by the EXOSAT satellite. We re-analyzed the EXOSAT data to derive the source position, column density, and a distance upper limit using its peak X-ray burst flux. We observed the EXO 1747-214 field in 2003 July with the Chandra X-ray Observatory to search for the quiescent counterpart. We found one possible candidate just outside the EXOSAT error circle, but we cannot rule out the possibility that the source is unrelated to EXO 1747-214. Our conclusion is that the upper limit on the unabsorbed 0.3-8 keV luminosity is L < 7E31 erg/s, making EXO 1747-214 one of the faintest neutron star transients in quiescence. We compare this luminosity upper limit to the quiescent luminosities of 19 neutron star and 14 black hole systems and discuss the results in the context of the differences between neutron stars and black holes. Based on the theory of deep crustal heating by Brown and coworkers, the luminosity implies an outburst recurrence time of >1300 yr unless some form of enhanced cooling occurs within the neutron star. The position of the possible X-ray counterpart is consistent with three blended optical/IR sources with R-magnitudes between 19.4 and 19.8 and J-magnitudes between 17.2 and 17.6. One of these sources could be the quiescent optical/IR counterpart of EXO 1747-214.Comment: 7 pages, accepted by the Astrophysical Journa

    Ground-State and Domain-Wall Energies in the Spin-Glass Region of the 2D ±J\pm J Random-Bond Ising Model

    Full text link
    The statistics of the ground-state and domain-wall energies for the two-dimensional random-bond Ising model on square lattices with independent, identically distributed bonds of probability pp of Jij=1J_{ij}= -1 and (1p)(1-p) of Jij=+1J_{ij}= +1 are studied. We are able to consider large samples of up to 3202320^2 spins by using sophisticated matching algorithms. We study L×LL \times L systems, but we also consider L×ML \times M samples, for different aspect ratios R=L/MR = L / M. We find that the scaling behavior of the ground-state energy and its sample-to-sample fluctuations inside the spin-glass region (pcp1pcp_c \le p \le 1 - p_c) are characterized by simple scaling functions. In particular, the fluctuations exhibit a cusp-like singularity at pcp_c. Inside the spin-glass region the average domain-wall energy converges to a finite nonzero value as the sample size becomes infinite, holding RR fixed. Here, large finite-size effects are visible, which can be explained for all pp by a single exponent ω2/3\omega\approx 2/3, provided higher-order corrections to scaling are included. Finally, we confirm the validity of aspect-ratio scaling for R0R \to 0: the distribution of the domain-wall energies converges to a Gaussian for R0R \to 0, although the domain walls of neighboring subsystems of size L×LL \times L are not independent.Comment: 11 pages with 15 figures, extensively revise

    Effects of environmental enrichment on behavioral responses to novelty, learning, and memory, and the circadian rhythm in cortisol in growing pigs

    Get PDF
    Previously we showed that pigs reared in an enriched environment had higher baseline salivary cortisol concentrations during the light period than pigs reared under barren conditions. In the present experiment, it was investigated whether these higher baseline salivary cortisol concentrations were a real difference in cortisol concentration or merely represented a phase difference in circadian rhythm. The effects of different cortisol concentrations on the behavioral responses to novelty and learning and long-term memory in a maze test were also studied in enriched and barren housed pigs. At 9 weeks of age enriched and barren housed pigs did not differ in baseline salivary cortisol concentrations nor in circadian rhythm, but at 22 weeks of age barren housed pigs had a blunted circadian rhythm in salivary cortisol as compared to enriched housed pigs. The differences in baseline salivary cortisol concentrations between enriched- and barren-housed pigs are age-dependent, and become visible after 15 weeks of age. Enriched- and barren-housed piglets did not differ in time spent on exploration in the novel environment test. Barren-housed pigs had an impaired long-term memory in the maze test compared to enriched-housed pigs; however, no differences in learning abilities between enriched- and barren-housed pigs were found. Because blunted circadian cortisol rhythms are often recorded during states of chronic stress in pigs and rats or during depression in humans, it is suggested that the blunted circadian rhythm in cortisol in barren-housed pigs similarily may reflect decreased welfare.
    corecore