In the buyback problem, an algorithm observes a sequence of bids and must
decide whether to accept each bid at the moment it arrives, subject to some
constraints on the set of accepted bids. Decisions to reject bids are
irrevocable, whereas decisions to accept bids may be canceled at a cost that is
a fixed fraction of the bid value. Previous to our work, deterministic and
randomized algorithms were known when the constraint is a matroid constraint.
We extend this and give a deterministic algorithm for the case when the
constraint is an intersection of k matroid constraints. We further prove a
matching lower bound on the competitive ratio for this problem and extend our
results to arbitrary downward closed set systems. This problem has applications
to banner advertisement, semi-streaming, routing, load balancing and other
problems where preemption or cancellation of previous allocations is allowed