134 research outputs found

    Association of systemic inflammatory biomarkers with morphological characteristics of coronary atherosclerotic plaque by intravascular optical coherence tomography

    Get PDF
    Despite significant advances in preventive, medical, and interventional management, coronary artery disease remains the leading cause of death worldwide. We now know that in the majority of acute coronary syndromes, a thrombotic event is triggered either by the rupture or erosion of the so-called high-risk or ‘vulnerable’ plaque. However, accurately identifying the individual who is at significant risk of acute event remains the holy grail of preventive cardiology. To better stratify an individual's risk of developing and suffering a cardiovascular event, biomarkers are needed that can accurately predict coronary events and, if possible, monitor disease activity in response to medical or interventional therapies. In order to be able to understand the association of these biomarkers with the morphological substrate of high-risk plaques, intravascular imaging modalities can provide invaluable assistance. Novel imaging tools such as optical coherence tomography (OCT) have not only helped in identifying atherosclerotic plaque characteristics that are unstable but also in estimating global plaque burden. In this study, we provide an overview of our current knowledge of association of various inflammatory markers with atherosclerotic plaque characteristics seen on OCT

    Screening for Venous Thromboembolism in Asymptomatic Trauma Patients: Effective in High Risk Patients

    Get PDF
    Hypothesis: Through data analysis of a large cohort of trauma patients, a clinically applicable protocol can be developed based on various predisposing factors for VTE in asymptomatic patients. By isolating the factors that make these patients high risk for VTE, we can effectively lower the incidence of PE in hospitalized trauma patients.https://jdc.jefferson.edu/patientsafetyposters/1001/thumbnail.jp

    SeekFusion - A Clinically Validated Fusion Transcript Detection Pipeline for PCR-Based Next-Generation Sequencing of RNA

    Get PDF
    Detecting gene fusions involving driver oncogenes is pivotal in clinical diagnosis and treatment of cancer patients. Recent developments in next-generation sequencing (NGS) technologies have enabled improved assays for bioinformatics-based gene fusions detection. In clinical applications, where a small number of fusions are clinically actionable, targeted polymerase chain reaction (PCR)-based NGS chemistries, such as the QIAseq RNAscan assay, aim to improve accuracy compared to standard RNA sequencing. Existing informatics methods for gene fusion detection in NGS-based RNA sequencing assays traditionally use a transcriptome-based spliced alignment approach or a de-novo assembly approach. Transcriptome-based spliced alignment methods face challenges with short read mapping yielding low quality alignments. De-novo assembly-based methods yield longer contigs from short reads that can be more sensitive for genomic rearrangements, but face performance and scalability challenges. Consequently, there exists a need for a method to efficiently and accurately detect fusions in targeted PCR-based NGS chemistries. We describe SeekFusion, a highly accurate and computationally efficient pipeline enabling identification of gene fusions from PCR-based NGS chemistries. Utilizing biological samples processed with the QIAseq RNAscan assay and in-silico simulated data we demonstrate that SeekFusion gene fusion detection accuracy outperforms popular existing methods such as STAR-Fusion, TOPHAT-Fusion and JAFFA-hybrid. We also present results from 4,484 patient samples tested for neurological tumors and sarcoma, encompassing details on some novel fusions identified

    Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response

    Get PDF
    MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe

    Comparison of Shear Bond Strength and Surface Structure Between Acid Etching and Air-Abrasion Techniques

    No full text
    Aim: To compare shear bond strength and surface structure between acid etching and air-abrasion techniques Materials and Methods : Sixty three extracted human premolar teeth were taken, divided into three groups and mounted with color codings. Group l was acid etched with 37% phosphoric acid. Group ll and lll -air abrasion was done with 50μ & 90μ Al2O3 particles respectively. After enamel preparation, from each group one tooth was selected for surface roughness study by scanning electron microscope (SEM). The other sixty teeth were selected to evaluate shear bond strength by Instron universal testing machine. Results : Group I showed significantly higher shear bond strength (10.1± 3.6 Mpa) than Group II and Group III. In SEM study Group l etching pattern showed peripheral dissolution of the prisms. The enamel removal of Group ll was more regular, uniform and less as compared to Group lll. Adhesive remnant index showed that no adhesive material was left on the tooth surface of Group ll & lll as compared to Group l after debonding. Conclusion: From the present study it was concluded that air abrasion can be used as an adjunct to acid etching but by itself it is not a potent enamel preparation agent

    Association of systemic inflammatory biomarkers with morphological characteristics of coronary atherosclerotic plaque by intravascular optical coherence tomography

    Get PDF
    Despite significant advances in preventive, medical, and interventional management, coronary artery disease remains the leading cause of death worldwide. We now know that in the majority of acute coronary syndromes, a thrombotic event is triggered either by the rupture or erosion of the so-called high-risk or ‘vulnerable’ plaque. However, accurately identifying the individual who is at significant risk of acute event remains the holy grail of preventive cardiology. To better stratify an individual's risk of developing and suffering a cardiovascular event, biomarkers are needed that can accurately predict coronary events and, if possible, monitor disease activity in response to medical or interventional therapies. In order to be able to understand the association of these biomarkers with the morphological substrate of high-risk plaques, intravascular imaging modalities can provide invaluable assistance. Novel imaging tools such as optical coherence tomography (OCT) have not only helped in identifying atherosclerotic plaque characteristics that are unstable but also in estimating global plaque burden. In this study, we provide an overview of our current knowledge of association of various inflammatory markers with atherosclerotic plaque characteristics seen on OCT
    • …
    corecore