130 research outputs found
Further constraints on electron acceleration in solar noise storms
We reexamine the energetics of nonthermal electron acceleration in solar
noise storms. A new result is obtained for the minimum nonthermal electron
number density required to produce a Langmuir wave population of sufficient
intensity to power the noise storm emission. We combine this constraint with
the stochastic electron acceleration formalism developed by Subramanian &
Becker (2005) to derive a rigorous estimate for the efficiency of the overall
noise storm emission process, beginning with nonthermal electron acceleration
and culminating in the observed radiation. We also calculate separate
efficiencies for the electron acceleration -- Langmuir wave generation stage
and the Langmuir wave -- noise storm production stage. In addition, we obtain a
new theoretical estimate for the energy density of the Langmuir waves in noise
storm continuum sources.Comment: Accepted for publication in Solar Physic
Combining visibilities from the Giant Meterwave Radio Telescope and the Nancay Radio Heliograph: High dynamic range snapshot images of the solar corona at 327 MHz
We report first results from an ongoing program of combining visibilities
from the Giant Meterwave Radio Telescope (GMRT) and the Nancay Radio Heliograph
(NRH) to produce composite snapshot images of the sun at meter wavelengths. We
describe the data processing, including a specific multi-scale CLEAN algorithm.
We present results of a) simulations for two models of the sun at 327 MHz, with
differing complexity b) observations of a complex noise storm on the sun at 327
MHz on Aug 27 2002. Our results illustrate the capacity of this method to
produce high dynamic range snapshot images when the solar corona has structures
with scales ranging from the image resolution of 49" to the size of the whole
sun.
We find that we cannot obtain reliable snapshot images for complex objects
when the visibilities are sparsely sampled.Comment: Accepted for publication in Astronomy & Astrophysics. Version with
high resolution figures available from
ftp://ftp.iucaa.ernet.in/in.coming/gmrtnr
Space storm measurements of the July 2005 solar extreme events from the low corona to the Earth
The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an
unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right
after the main phase of the Forbush decrease on 16 July 2005, followed by a
second decrease within less than 12 h. This exceptional event is neither a
ground level enhancement nor a geomagnetic effect in cosmic rays. It rather
appears as the effect of a special structure of interplanetary disturbances
originating from a group of coronal mass ejections (CMEs) in the 13-14 July
2005 period. The initiation of the CMEs was accompanied by type IV radio bursts
and intense solar flares (SFs) on the west solar limb (AR 786); this group of
energetic phenomena appears under the label of Solar Extreme Events of July
2005. We study the characteristics of these events using combined data from
Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)),
space (WIND/WAVES) and data archives. We propose an interpretation of the
unusual Forbush profile in terms of a magnetic structure and a succession of
interplanetary shocks interacting with the magnetosphere.Comment: Advances in Space Research, Volume 43, Issue 4, p. 600-60
Comparison of 30 THz impulsive burst time development to microwaves, H-alpha, EUV, and GOES soft X-rays
The recent discovery of impulsive solar burst emission in the 30 THz band is
raising new interpretation challenges. One event associated with a GOES M2
class flare has been observed simultaneously in microwaves, H-alpha, EUV, and
soft X-ray bands. Although these new observations confirm some features found
in the two prior known events, they exhibit time profile structure
discrepancies between 30 THz, microwaves, and hard X-rays (as inferred from the
Neupert effect). These results suggest a more complex relationship between 30
THz emission and radiation produced at other wavelength ranges. The multiple
frequency emissions in the impulsive phase are likely to be produced at a
common flaring site lower in the chromosphere. The 30 THz burst emission may be
either part of a nonthermal radiation mechanism or due to the rapid thermal
response to a beam of high-energy particles bombarding the dense solar
atmosphere.Comment: accepted to Astronomy and Astrophysic
Do solar decimetric spikes originate in coronal X-ray sources?
In the standard solar flare scenario, a large number of particles are
accelerated in the corona. Nonthermal electrons emit both X-rays and radio
waves. Thus, correlated signatures of the acceleration process are predicted at
both wavelengths, coinciding either close to the footpoints of a magnetic loop
or near the coronal X-ray source. We attempt to study the spatial connection
between coronal X-ray emission and decimetric radio spikes to determine the
site and geometry of the acceleration process. The positions of radio-spike
sources and coronal X-ray sources are determined and analyzed in a
well-observed limb event. Radio spikes are identified in observations from the
Phoenix-2 spectrometer. Data from the Nan\c{c}ay radioheliograph are used to
determine the position of the radio spikes. RHESSI images in soft and hard
X-ray wavelengths are used to determine the X-ray flare geometry. Those
observations are complemented by images from GOES/SXI. We find that decimetric
spikes do not originate from coronal X-ray flare sources contrary to previous
expectations. However, the observations suggest a causal link between the
coronal X-ray source, related to the major energy release site, and
simultaneous activity in the higher corona.Comment: 4 pages, 3 figures, A&AL accepte
Composition Structure of Interplanetary Coronal Mass Ejections From Multispacecraft Observations, Modeling, and Comparison with Numerical Simulations
We present an analysis of the ionic composition of iron for two
interplanetary coronal mass ejections observed in May 21-23 2007 by the ACE and
STEREO spacecraft in the context of the magnetic structure of the ejecta flux
rope, sheath region, and surrounding solar wind flow. This analysis is made
possible due to recent advances in multispacecraft data interpolation,
reconstruction, and visualization as well as results from recent modeling of
ionic charge states in MHD simulations of magnetic breakout and flux
cancellation CME initiation. We use these advances to interpret specific
features of the ICME plasma composition resulting from the magnetic topology
and evolution of the CME. We find that in both the data and our MHD
simulations, the flux ropes centers are relatively cool, while charge state
enhancements surround and trail the flux ropes. The magnetic orientation of the
ICMEs are suggestive of magnetic breakout-like reconnection during the eruption
process, which could explain the spatial location of the observed iron
enhancements just outside the traditional flux rope magnetic signatures and
between the two ICMEs. Detailed comparisons between the simulations and data
were more complicated, but a sharp increase in high iron charge states in the
ACE and STEREO-A data during the second flux rope corresponds well to similar
features in the flux cancellation results. We discuss the prospects of this
integrated in-situ data analysis and modeling approach to advancing our
understanding of the unified CME-to-ICME evolution.Comment: Accepted for submission to The Astrophysical Journa
Dupilumab-associated ocular surface disease : an interdisciplinary decision framework for prescribers in the Australian setting
Background/Objectives: Dupilumab-associated ocular surface disease (DAOSD) is of particular relevance in patients with atopic dermatitis (AD). Guidance on DAOSD assessment and management in the Australian setting is needed to reduce its impact and minimise disruption to treatment. Methods: A systematic review of the literature was undertaken to identify data pertaining to the incidence, pathophysiology, risk factors and management of DAOSD. A critical review of this literature was used to inform a decision framework for dupilumab-prescribers and develop a graded severity scoring tool to guide appropriate management options. Results: DAOSD typically emerges within 4 months of commencing dupilumab and the occurrence of new events diminishes over time. The reported incidence varies widely depending on the nature and source of the data: 8.6–22.1% (clinical trials programme), 0.5–70% (real-world data; differences in study size, duration of follow-up, ophthalmologist intervention, use of prophylaxis). Occurrence increases with AD severity and in patients with prior history of ocular disease; pathophysiology is still to be fully characterised. Management options have evolved over time and include lubricants/artificial tears, corticosteroids, calcineurin inhibitors, antihistamines, anti-inflammatory agents and antimicrobial agents. Current therapies aim to resolve symptoms or reduce severity to levels sufficiently tolerable to enable continuation of dupilumab therapy. Conclusions: Recommendations for DAOSD assessment and management include identification of high-risk patients, vigilance for red flags (keratoconus, herpetic and bacterial keratitis), regular assessment of symptom severity (before and during dupilumab therapy), conservative management of mild DAOSD by the prescribing physician and ophthalmologist referral for collaborative care of moderate–severe DAOSD and high-risk patients
LOFAR tied-array imaging of Type III solar radio bursts
Context. The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (< 100 MHz), the Sun has not been imaged extensively because of
Noise storm continua: power estimates for electron acceleration
We use a generic stochastic acceleration formalism to examine the power
() input to nonthermal electrons that cause
noise storm continuum emission. The analytical approach includes the derivation
of the Green's function for a general second-order Fermi process, and its
application to obtain the particular solution for the nonthermal electron
distribution resulting from the acceleration of a Maxwellian source in the
corona. We compare with the power observed in noise
storm radiation. Using typical values for the various parameters, we find that
, yielding an efficiency
estimate in the range 10^{-10} \lsim \eta
\lsim 10^{-6} for this nonthermal acceleration/radiation process. These
results reflect the efficiency of the overall process, starting from electron
acceleration and culminating in the observed noise storm emission.Comment: Accepted for publication in Solar Physic
- …