8 research outputs found

    The SOCS-Box of HIV-1 Vif Interacts with ElonginBC by Induced-Folding to Recruit Its Cul5-Containing Ubiquitin Ligase Complex

    Get PDF
    The HIV-1 viral infectivity factor (Vif) protein recruits an E3 ubiquitin ligase complex, comprising the cellular proteins elongin B and C (EloBC), cullin 5 (Cul5) and RING-box 2 (Rbx2), to the anti-viral proteins APOBEC3G (A3G) and APOBEC3F (A3F) and induces their polyubiquitination and proteasomal degradation. In this study, we used purified proteins and direct in vitro binding assays, isothermal titration calorimetry and NMR spectroscopy to describe the molecular mechanism for assembly of the Vif-EloBC ternary complex. We demonstrate that Vif binds to EloBC in two locations, and that both interactions induce structural changes in the SOCS box of Vif as well as EloBC. In particular, in addition to the previously established binding of Vif's BC box to EloC, we report a novel interaction between the conserved Pro-Pro-Leu-Pro motif of Vif and the C-terminal domain of EloB. Using cell-based assays, we further show that this interaction is necessary for the formation of a functional ligase complex, thus establishing a role of this motif. We conclude that HIV-1 Vif engages EloBC via an induced-folding mechanism that does not require additional co-factors, and speculate that these features distinguish Vif from other EloBC specificity factors such as cellular SOCS proteins, and may enhance the prospects of obtaining therapeutic inhibitors of Vif function

    Non-nucleoside HIV-1 reverse transcriptase inhibitors di-halo-indolyl aryl sulfones achieve tight binding to drug-resistant mutants by targeting the enzyme-substrate complex.

    No full text
    Indolyl aryl sulfone (IAS) non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) have been previously shown to effectively inhibit wild-type (wt) and drug-resistant human immunodeficiency virus type 1 (HIV-1) replication. IASs proved to act through different mechanisms of action, depending on the nature and position of their chemical substituents. Here we describe selected novel IAS derivatives (di-halo-IASs). Our results show that these compounds are selective for the enzyme-substrate complex. The molecular basis for this selectivity was a different dissociation rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the resistant enzymes carrying the single mutations Lys103Asn, Leu100Ile, and Tyr181Ile (K103N, L100I, and Y181I), we found that one compound (RS1914) dissociated from the mutated enzymes almost 10-fold slower than from the wild type RT. These results demonstrate that IASs are very flexible molecules, interacting dynamically with the viral RT, and that this property can be successfully exploited to design inhibitors endowed with an enhanced binding to common NNRTI-resistant mutants

    Mechanism of interaction of novel indolylarylsulfone derivatives with K103N and Y181I mutant HIV-1 reverse transcriptase in complex with its substrates

    Get PDF
    Background: Novel indolylarylsulfones (IASs), designed through rational structure-based molecular modelling and docking approaches, have been recently characterized as effective inhibitors of the wild-type and drug-resistant mutant HIV-1 reverse transcriptase (RT). Methods: Here, we studied the interaction of selected halo- and nitro-substituted IAS derivatives, with the RT enzyme carrying the single resistance mutations K103N and Y181I through steady-state kinetic experiments. Results: The studied compounds exhibited high selectivity to the mutant RT in complex with its substrates, behaving as uncompetitive inhibitors. The presence of the K103N mutation, and to a lesser extent the Y181I, stabilized the drug interactions with the viral RT, when both its substrates were bound. Conclusions: The characterization of these mutation-specific effects on inhibitor binding might be relevant to the design of more effective new generation non-nucleoside reverse transcriptase inhibitors, with better resilience towards drug resistant mutants

    Features, processing states and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function

    No full text
    Nucleocapsid (NC) is central to retroviral replication. Nucleic acid chaperoning is a key function for NC through the action of its conserved basic amino acids and zinc-finger structures. NC manipulates genomic RNA from its packaging in the producer cell to reverse transcription into the infected host cell. This chaperone function, in conjunction with NCs aggregating properties, is up-modulated by successive NC processing events, from the Gag precursor to the fully mature protein, resulting in the condensation of the nucleocapsid within the capsid shell. Reverse transcription also depends on NC processing, whereas this process provokes NC dissociation from double-stranded DNA, leading to a preintegration complex (PIC), competent for host chromosomal integration. In addition NC interacts with cellular proteins, some of which are involved in viral budding, and also with several viral proteins. All of these properties are reviewed here, focusing on HIV-1 as a paradigmatic reference and highlighting the plasticity of the nucleocapsid architecture
    corecore