20 research outputs found

    Model validation for a noninvasive arterial stenosis detection problem

    Get PDF
    Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)

    Combined ultrasound, optoacoustic and elasticity imaging

    No full text
    Combination of three complementary imaging technologies- ultrasound imaging, elastography, and optoacoustic imaging- is suggested for detection and diagnostics of tissue pathology including cancer. The fusion of these ultrasound-based techniques results in a novel imaging system capable of simultaneous imaging of the anatomy (ultrasound imaging), cancer-induced angiogenesis (optoacoustic imaging) and changes in mechanical properties (elasticity imaging) of tissue to uniquely identify and differentiate pathology at various stages. To evaluate our approach, analytical and numerical studies were performed using heterogeneous phantoms where ultrasonic, optical and viscoelastic properties of the materials were chosen to closely mimic soft tissue. The results of this study suggest that combined ultrasound-based imaging is possible and can provide more accurate, reliable and earlier detection and diagnosis of tissue pathology. In addition, monitoring of cancer treatment and guidance of tissue biopsy are possible with a combined imaging system

    Nonreversible Immobilization of Water-Borne Plutonium onto Self-Assembled Adlayers of Silanized Humic Materials

    No full text
    The objective was to study plutonium partitioning between immobile and mobile humic materials at the water–solid interfaces. Immobilization of the humic materials on solid supports was performed in situ using self-adhesive silanized humic derivatives. The presence of the humic adlayers on solid supports was shown to significantly enhance Pu sorption and its retention under both steady state and dynamic conditions. While plutonium may exist in multiple oxidations states plus colloidal forms, the major thrust in this work was to study the behavior of most mobile – the PuO<sub>2</sub><sup>+</sup> form in dilute solutions. The values of the plutonium partition coefficients (<i>K</i><sub>d</sub>) between water and humics-coated silica gels after 10 days exposure reached 1.6 × 10<sup>4</sup> L·kg<sup>–1</sup> at pH 7.5 under anaerobic conditions with a total plutonium concentration of 1.2 × 10<sup>–8</sup> M exceeding those for the uncoated SiO<sub>2</sub> (6.3 × 10<sup>2</sup> L·kg<sup>–1</sup>). Column tests showed substantial sequestration of water-borne plutonium (up to 73%) on the humics-coated silica gels. Remobilization experiments conducted under batch conditions at different pH values (3.5, 4.5, 7.5) showed that no more than 3% of the sequestered Pu was remobilized from the humics-coated silica gels by treatment with dissolved humic materials at environmentally relevant pH of 7.5. Consequently, silanized humic materialas can be seen as both molecular probes and as potent candidate materials for scavenging mobile Pu from an aqueous phase
    corecore