Combined ultrasound, optoacoustic and elasticity imaging

Abstract

Combination of three complementary imaging technologies- ultrasound imaging, elastography, and optoacoustic imaging- is suggested for detection and diagnostics of tissue pathology including cancer. The fusion of these ultrasound-based techniques results in a novel imaging system capable of simultaneous imaging of the anatomy (ultrasound imaging), cancer-induced angiogenesis (optoacoustic imaging) and changes in mechanical properties (elasticity imaging) of tissue to uniquely identify and differentiate pathology at various stages. To evaluate our approach, analytical and numerical studies were performed using heterogeneous phantoms where ultrasonic, optical and viscoelastic properties of the materials were chosen to closely mimic soft tissue. The results of this study suggest that combined ultrasound-based imaging is possible and can provide more accurate, reliable and earlier detection and diagnosis of tissue pathology. In addition, monitoring of cancer treatment and guidance of tissue biopsy are possible with a combined imaging system

    Similar works

    Full text

    thumbnail-image

    Available Versions