144 research outputs found

    The relation of C - reactive protein to chronic kidney disease in African Americans: the Jackson Heart Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>African Americans have an increased incidence and worse prognosis with chronic kidney disease (CKD - estimated glomerular filtration rate [eGFR] <60 ml/min/1.73 m<sup>2</sup>) than their counterparts of European-descent. Inflammation has been related to renal disease in non-Hispanic whites, but there are limited data on the role of inflammation in renal dysfunction in African Americans in the community.</p> <p>Methods</p> <p>We examined the cross-sectional relation of log transformed C-reactive protein (CRP) to renal function (eGFR by Modification of Diet and Renal Disease equation) in African American participants of the community-based Jackson Heart Study's first examination (2000 to 2004). We conducted multivariable linear regression relating CRP to eGFR adjusting for age, sex, body mass index, systolic and diastolic blood pressure, diabetes, total/HDL cholesterol, triglycerides, smoking, antihypertensive therapy, lipid lowering therapy, hormone replacement therapy, and prevalent cardiovascular disease events. In a secondary analysis we assessed the association of CRP with albuminuria (defined as albumin-to-creatinine ratio > 30 mg/g).</p> <p>Results</p> <p>Participants (n = 4320, 63.2% women) had a mean age ± SD of 54.0 ± 12.8 years. The prevalence of CKD was 5.2% (n = 228 cases). In multivariable regression, CRP concentrations were higher in those with CKD compared to those without CKD (mean CRP 3.2 ± 1.1 mg/L vs. 2.4 ± 1.0 mg/L, respectively p < 0.0001). CRP was significantly associated with albuminuria in sex and age adjusted model however not in the multivariable adjusted model (p > 0.05).</p> <p>Conclusion</p> <p>CRP was associated with CKD however not albuminuria in multivariable-adjusted analyses. The study of inflammation in the progression of renal disease in African Americans merits further investigation.</p

    Characterizations of some discarded shells particles polymer-based composites for ceilings and particles board applications

    Get PDF
    Sea-shells, periwinkle-shells, and snail-shells were pulverized into 35.5 µm particle sizes. Using a two-roll Rheomixer with a rotor speed of 60 rpm for 10 minutes, the particles were thoroughly mixed with the binders in ratio 2:1 and placed in the compression mold of dimension 15 cm by 3 cm by 3 cm using a force of 1.5 kN. The Rockwell hardness tester on scale B with a 1.56 mm steel ball, optical microscope and Flexural tester were used to characterize the composites. Thermo-gravimetric analyzer and Fourier Transform Infrared (FTIR) Spectrometer were used to characterize the shell particles. According to the results, epoxy resin (bisphenol-A-diglycidyl ether poly) and hardener (isophoromediamine) composites containing periwinkle shell particles had the highest hardness number of 48 and could withstand maximum flexural load of 5.5 MPa ether poly) and hardener (isophoromediamine) proved to be the best epoxy resin. All the shell particleS functional groups were visible in the FTIR analysis with varying transmittances at their respective wavenumbers. Optical micrographs of the composites showed uniform distribution of the reinforcement and the matrix, thermo-gravimetric analyses demonstrated good thermal stability of the shell-particles up to 250 ◦

    Mouse Studies to Shape Clinical Trials for Mitochondrial Diseases: High Fat Diet in Harlequin Mice

    Get PDF
    BACKGROUND: Therapeutic options in human mitochondrial oxidative phosphorylation (OXPHOS) diseases have been poorly evaluated mostly because of the scarcity of cohorts and the inter-individual variability of disease progression. Thus, while a high fat diet (HFD) is often recommended, data regarding efficacy are limited. Our objectives were 1) to determine our ability to evaluate therapeutic options in the Harlequin OXPHOS complex I (CI)-deficient mice, in the context of a mitochondrial disease with human hallmarks and 2) to assess the effects of a HFD. METHODS AND FINDINGS: Before launching long and expensive animal studies, we showed that palmitate afforded long-term death-protection in 3 CI-mutant human fibroblasts cell lines. We next demonstrated that using the Harlequin mouse, it was possible to draw solid conclusions on the efficacy of a 5-month-HFD on neurodegenerative symptoms. Moreover, we could identify a group of highly responsive animals, echoing the high variability of the disease progression in Harlequin mice. CONCLUSIONS: These results suggest that a reduced number of patients with identical genetic disease should be sufficient to reach firm conclusions as far as the potential existence of responders and non responders is recognized. They also positively prefigure HFD-trials in OXPHOS-deficient patients

    Human Iron−Sulfur Cluster Assembly, Cellular Iron Homeostasis, and Disease†

    Get PDF
    ABSTRACT: Iron-sulfur (Fe-S) proteins contain prosthetic groups consisting of two or more iron atoms bridged by sulfur ligands, which facilitate multiple functions, including redox activity, enzymatic function, and maintenance of structural integrity. More than 20 proteins are involved in the biosynthesis of iron-sulfur clusters in eukaryotes. Defective Fe-S cluster synthesis not only affects activities of many iron-sulfur enzymes, such as aconitase and succinate dehydrogenase, but also alters the regulation of cellular iron homeostasis, causing both mitochondrial iron overload and cytosolic iron deficiency. In this work, we review human Fe-S cluster biogenesis and human diseases that are caused by defective Fe-S cluster biogenesis. Fe-S cluster biogenesis takes place essentially in every tissue of humans, and products of human disease genes, including frataxin, GLRX5, ISCU, and ABCB7, have important roles in the process. However, the human diseases, Friedreich ataxia, glutaredoxin 5-deficient sideroblastic anemia, ISCU myopathy, and ABCB7 sideroblastic anemia/ataxia syndrome, affect specific tissues, while sparing others. Here we discuss the phenotypes caused by mutations in these different disease genes, and we compare the underlying pathophysiology and discuss the possible explanations for tissue-specific pathology in these diseases caused by defective Fe-S cluster biogenesis. HUMAN CELLULAR IRON HOMEOSTASI

    Anthropomorphic Measurements That Include Central Fat Distribution Are More Closely Related with Key Risk Factors than BMI in CKD Stage 3

    Get PDF
    Background: Body Mass Index (BMI) as a marker of obesity is an established risk factor for chronic kidney disease (CKD) and cardiovascular disease (CVD). However, BMI can overestimate obesity. Anthropomorphic measurements that include central fat deposition are emerging as a more important risk factor. We studied BMI, waist circumference (WC), waist-to-height ratio (WHtR), waist-to-hip ratio (WHR) and conicity index (CI) in a cohort of patients with CKD stage 3 and compared the associations with other known risk factors for CKD progression and CVD. Methods: 1740 patients with CKD stage 3 were recruited from primary care for the Renal Risk in Derby study. Each participant underwent clinical assessment, including anthropomorphic measurements and pulse wave velocity (PWV), as well as urine and serum biochemistry tests. Results: The mean age of the cohort was 72.969 years with 60 % females. The mean eGFR was 52.5610.4 ml/min/1.73 m 2 and 16.9 % of the cohort had diabetes. With the cohort divided into normal and increased risk of morbidity and mortality using each anthropomorphic measurement, those measurements that included increased central fat distribution were significantly associated with more risk factors for CKD progression and CVD than increased BMI. Univariable analysis demonstrated central fat distribution was correlated with more risk factors than BMI. Subgroup analyses using recognised BMI cut-offs to define obesity and quartiles of WHR and CI demonstrated that increasing central fat distribution wa

    Anticholinergic drug burden tools/scales and adverse outcomes in different clinical settings: a systematic review of reviews

    Get PDF
    Background: Cumulative anticholinergic exposure (anticholinergic burden) has been linked to a number of adverse outcomes. To conduct research in this area, an agreed approach to describing anticholinergic burden is needed. Objective: This review set out to identify anticholinergic burden scales, to describe their rationale, the settings in which they have been used and the outcomes associated with them. Methods: A search was performed using the Healthcare Databases Advanced Search of MEDLINE, EMBASE, Cochrane, CINAHL and PsycINFO from inception to October 2016 to identify systematic reviews describing anticholinergic burden scales or tools. Abstracts and titles were reviewed to determine eligibility for review with eligible articles read in full. The final selection of reviews was critically appraised using the ROBIS tool and pre-defined data were extracted; the primary data of interest were the anticholinergic burden scales or tools used. Results: Five reviews were identified for analysis containing a total of 62 original articles. Eighteen anticholinergic burden scales or tools were identified with variation in their derivation, content and how they quantified the anticholinergic activity of medications. The Drug Burden Index was the most commonly used scale or tool in community and database studies, while the Anticholinergic Risk Scale was used more frequently in care homes and hospital settings. The association between anticholinergic burden and clinical outcomes varied by index and study. Falls and hospitalisation were consistently found to be associated with anticholinergic burden. Mortality, delirium, physical function and cognition were not consistently associated. Conclusions: Anticholinergic burden scales vary in their rationale, use and association with outcomes. This review showed that the concept of anticholinergic burden has been variably defined and inconsistently described using a number of indices with different content and scoring. The association between adverse outcomes and anticholinergic burden varies between scores and has not been conclusively established

    A generalised porous medium approach to study thermo-fluid dynamics in human eyes

    Get PDF
    The present work describes the application of the generalised porous medium model to study heat and fluid flow in healthy and glaucomatous eyes of different subject specimens, considering the presence of ocular cavities and porous tissues. The 2D computational model, implemented into the open-source software OpenFOAM, has been verified against benchmark data for mixed convection in domains partially filled with a porous medium. The verified model has been employed to simulate the thermo-fluid dynamic phenomena occurring in the anterior section of four patient-specific human eyes, considering the presence of anterior chamber (AC), trabecular meshwork (TM), Schlemm’s canal (SC), and collector channels (CC). The computational domains of the eye are extracted from tomographic images. The dependence of TM porosity and permeability on intraocular pressure (IOP) has been analysed in detail, and the differences between healthy and glaucomatous eye conditions have been highlighted, proving that the different physiological conditions of patients have a significant influence on the thermo-fluid dynamic phenomena. The influence of different eye positions (supine and standing) on thermo-fluid dynamic variables has been also investigated: results are presented in terms of velocity, pressure, temperature, friction coefficient and local Nusselt number. The results clearly indicate that porosity and permeability of TM are two important parameters that affect eye pressure distribution

    Progenitor identification and SARS-CoV-2 infection in human distal lung organoids

    Get PDF
    The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate investigation of pathologies including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. We generated long-term feeder-free, chemically defined culture of distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids exhibited AT1 transdifferentiation potential while basal cell organoids developed lumens lined by differentiated club and ciliated cells. Single cell analysis of basal organoid KRT5+ cells revealed a distinct ITGA6+ITGB4+ mitotic population whose proliferation further segregated to a TNFRSF12Ahi subfraction comprising ~10% of KRT5+ basal cells, residing in clusters within terminal bronchioles and exhibiting enriched clonogenic organoid growth activity. Distal lung organoids were created with apical-out polarity to display ACE2 on the exposed external surface, facilitating SARS-CoV-2 infection of AT2 and basal cultures and identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and establishes a facile in vitro organoid model for human distal lung infections including COVID-19-associated pneumonia
    corecore