496 research outputs found

    207Pb and 17O NMR Study of the Electron Density Distribution in Metal Phase of BaPb_{1-x}Bi_xO_3

    Full text link
    The 17O and 207Pb NMR spectra were measured in ceramic samples in the metallic phase of BaPb_{1-x}Bi_{x}O_3 oxides (0<x< 0.33). The inhomogeneous magnetic broadening which appears due to a distribution of the Knight shifts was analyzed in detail. It is shown that Bi atoms, which are randomly incorporated in BaPbO_3 parent compound give rise to an increased conduction electron spin density within an area which is delimited by its two first cation shells. According to NMR data the percolative overlap of these areas occurs in superconducting compositions and it is accompanied by a sharp growth of the average Knight shift . The decrease of with temperature revealed for x=0.33 evidences for an opening of the energy gap near E_F near the metal-semiconductor transition (x=0.35).Comment: submitted to Phys. Rev.

    NMR and NQR study of pressure-induced superconductivity and the origin of critical-temperature enhancement in the spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41}

    Get PDF
    Pressure-induced superconductivity was studied for a spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41} using nuclear magnetic resonance (NMR) under pressures up to the optimal pressure 3.8 GPa. Pressure application leads to a transitional change from a spin-gapped state to a Fermi-liquid state at temperatures higher than TcT_c. The relaxation rate 1/T11/T_1 shows activated-type behavior at an onset pressure, whereas Korringa-like behavior becomes predominant at the optimal pressure, suggesting that an increase in the density of states (DOS) at the Fermi energy leads to enhancement of TcT_c. Nuclear quadrupole resonance (NQR) spectra suggest that pressure application causes transfer of holes from the chain to the ladder sites. The transfer of holes increases DOS below the optimal pressure. A dome-shaped TcT_c versus pressure curve arises from naive balance between the transfer of holes and broadening of the band width

    The charge ordered state in half-doped Bi-based manganites studied by 17^{17}O and 209^{209}Bi NMR

    Full text link
    We present a 209^{209}Bi and 17^{17}O NMR study of the Mn electron spin correlations developed in the charge ordered state of Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} and Bi0.5_{0.5}Ca0.5_{0.5}MnO3_{3}. The unusually large local magnetic field 209Hloc^{209}H_{loc} indicates the dominant 6s26s^{2} character of the lone electron pair of Bi3+^{3+}-ions in both compounds. The mechanism connecting the ss character of the lone pairs to the high temperature of charge ordering TCOT_{CO} is still not clarified. The observed difference in 209Hloc^{209}H_{loc} for Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} to Bi0.5_{0.5}Ca0.5_{0.5}MnO3_{3} is probably due to a decrease in the canting of the staggered magnetic moments of Mn3+^{3+}-ions from. The modification of the 17^{17}O spectra below TCOT_{CO} demonstrates that the line due to the apical oxygens is a unique local tool to study the development of the Mn spin correlations. In the AF state the analysis of the 17^{17}O spectrum of Pr0.5_{0.5}Ca0.5_{0.5}MnO3_{3} and Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} prompts us to try two different theoretical descriptions of the charge-ordered state, a site-centered model for the first manganite and a bond-centered model for the second one.Comment: 10 pages, 7 figure

    Three very young HgMn stars in the Orion OB1 Association

    Get PDF
    We report the detection of three mercury-manganese stars in the Orion OB1 association. HD 37886 and BD-0 984 are in the approximately 1.7 million year old Orion OB1b. HD 37492 is in the approximately 4.6 million year old Orion OB1c. Orion OB1b is now the youngest cluster with known HgMn star members. This places an observational upper limit on the time scale needed to produce the chemical peculiarities seen in mercury-manganese stars, which should help in the search for the cause or causes of the peculiar abundances in HgMn and other chemically peculiar upper main sequence stars.Comment: 8 pages including 1 figure. To appear in Astrophysical Journal Letter

    Atomic Diffusion and Mixing in Old Stars I. VLT/FLAMES-UVES Observations of Stars in NGC 6397

    Full text link
    We present a homogeneous photometric and spectroscopic analysis of 18 stars along the evolutionary sequence of the metal-poor globular cluster NGC 6397 ([Fe/H] = -2), from the main-sequence turnoff point to red giants below the bump. The spectroscopic stellar parameters, in particular stellar-parameter differences between groups of stars, are in good agreement with broad-band and Stroemgren photometry calibrated on the infrared-flux method. The spectroscopic abundance analysis reveals, for the first time, systematic trends of iron abundance with evolutionary stage. Iron is found to be 31% less abundant in the turnoff-point stars than in the red giants. An abundance difference in lithium is seen between the turnoff-point and warm subgiant stars. The impact of potential systematic errors on these abundance trends (stellar parameters, the hydrostatic and LTE approximations) is quantitatively evaluated and found not to alter our conclusions significantly. Trends for various elements (Li, Mg, Ca, Ti and Fe) are compared with stellar-structure models including the effects of atomic diffusion and radiative acceleration. Such models are found to describe the observed element-specific trends well, if extra (turbulent) mixing just below the convection zone is introduced. It is concluded that atomic diffusion and turbulent mixing are largely responsible for the sub-primordial stellar lithium abundances of warm halo stars. Other consequences of atomic diffusion in old metal-poor stars are also discussed.Comment: 20 pages (emulateapj), 11 figures, accepted for publication in Ap

    Coexistence of Superconductivity and Antiferromagnetism in Multilayered High-TcT_c Superconductor HgBa2_2Ca4_4Cu5_5Oy_y: A Cu-NMR Study

    Full text link
    We report a coexistence of superconductivity and antiferromagnetism in five-layered compound HgBa2_2Ca4_4Cu5_5Oy_y (Hg-1245) with Tc=108T_c=108 K, which is composed of two types of CuO2_2 planes in a unit cell; three inner planes (IP's) and two outer planes (OP's). The Cu-NMR study has revealed that the optimallydoped OP undergoes a superconducting (SC) transition at Tc=108T_c=108 K, whereas the three underdoped IP's do an antiferromagnetic (AF) transition below TNT_N\sim 60 K with the Cu moments of (0.30.4)μB\sim (0.3-0.4)\mu_B. Thus bulk superconductivity with a high value of Tc=108T_c=108 K and a static AF ordering at TN=60T_N=60 K are realized in the alternating AF and SC layers. The AF-spin polarization at the IP is found to induce the Cu moments of 0.02μB\sim0.02\mu_B at the SC OP, which is the AF proximity effect into the SC OP.Comment: 6 pages, 8 figure

    Diamagnetism above Tc in underdoped Bi2.2Sr1.8Ca2Cu3O10+d

    Full text link
    Single crystals of Bi2+xSr2xCa2Cu3O10+δ{\rm Bi}_{2+x}{\rm Sr}_{2-x}{\rm Ca}_{2}{\rm Cu}_{3}{\rm O}_{10+\delta}(Bi2223) with x=0.2x=0.2 were grown by a traveling solvent floating zone method in order to investigate the superconducting properties of highly underdoped Bi2223.Grown crystals were characterized by X-ray diffraction, DC susceptibility and resistivity measurements, confirming Bi2223 to be the main phase.The crystals were annealed under various oxygen partial pressures to adjust their carrier densities from optimally doped to highly underdoped.The fluctuation diamagnetic component above the superconducting transition temperature TcT_{\rm c} extracted from the anisotropic normal state susceptibilities χab(T)\chi_{ab}(T) (HcH\perp c) and χc(T)\chi_{c}(T) (HcH\parallel c) was found to increase with underdoping, suggesting a decrease in the superconducting dimensionality and/or increase in the fluctuating vortex liquid region.Comment: 6 pages, 7 figures, corrected fig.4 and references, published in J. Phys. Soc. Jpn. 79, 114711 (2010

    The Kr85 s-process Branching and the Mass of Carbon Stars

    Full text link
    We present new spectroscopic observations for a sample of C(N)-type red giants. These objects belong to the class of Asymptotic Giant Branch stars, experiencing thermal instabilities in the He-burning shell (thermal pulses). Mixing episodes called third dredge-up enrich the photosphere with newly synthesized C12 in the He-rich zone, and this is the source of the high observed ratio between carbon and oxygen (C/O > 1 by number). Our spectroscopic abundance estimates confirm that, in agreement with the general understanding of the late evolutionary stages of low and intermediate mass stars, carbon enrichment is accompanied by the appearance of s-process elements in the photosphere. We discuss the details of the observations and of the derived abundances, focusing in particular on rubidium, a neutron-density sensitive element, and on the s-elements Sr, Y and Zr belonging to the first s-peak. The critical reaction branching at Kr85, which determines the relative enrichment of the studied species, is discussed. Subsequently, we compare our data with recent models for s-processing in Thermally Pulsing Asymptotic Giant Branch stars, at metallicities relevant for our sample. A remarkable agreement between model predictions and observations is found. Thanks to the different neutron density prevailing in low and intermediate mass stars, comparison with the models allows us to conclude that most C(N) stars are of low mass (M < 3Mo). We also analyze the C12/C13 ratios measured, showing that most of them cannot be explained by canonical stellar models. We discuss how this fact would require the operation of an ad hoc additional mixing, currently called Cool Bottom Process, operating only in low mass stars during the first ascent of the red giant branch and, perhaps, also during the asymptotic giant branch.Comment: 54 pages + 6 figures + 6 tables. ApJ accepte

    Upper limits for a narrow resonance in the reaction p + p -> K^+ + (Lambda p)

    Full text link
    The reaction pp -> K^+ + (Lambda p) has been measured at T_p = 1.953 GeV and \Theta = 0 deg with a high missing mass resolution in order to study the Lambda p final state interaction. Narrow S = -1 resonances predicted by bag model calculations are not visible in the missing mass spectrum. Small structures observed in a previous experiment are not confirmed. Upper limits for the production cross section of a narrow resonance are deduced for missing masses between 2058 and 2105 MeV/c^2.Comment: 8 pages, 5 figure
    corecore