128 research outputs found

    Effect of input pulse chirp on nonlinear energy deposition and plasma excitation in water

    Full text link
    We analyze numerically and experimentally the effect of the input pulse chirp on the nonlinear energy deposition from 5 μ5\ \muJ fs-pulses at 800800 nm to water. Numerical results are also shown for pulses at 400400 nm, where linear losses are minimized, and for different focusing geometries. Input chirp is found to have a big impact on the deposited energy and on the plasma distribution around focus, thus providing a simple and effective mechanism to tune the electron density and energy deposition. We identify three relevant ways in which plasma features may be tuned.Comment: 9 pages, 7 figure

    The effect of null-chains on the complexity of contact schemes

    Full text link

    No small nondeterministic read-once branching programs for CNFs of bounded treewidth

    Get PDF
    In this paper, given a parameter k, we demonstrate an infinite class of cnfs of treewidth at most k of their primal graphs such that equivalent nondeterministic read-once branching programs (nrobps) are of size at least nck for some universal constant c. Thus we rule out the possibility of fixed-parameter tractable space complexity of nrobps parameterized by the smallest treewidth of equivalent cnfs

    On the read-once property of branching programs and CNFs of bounded treewidth

    Get PDF
    for non-deterministic (syntactic) read-once branching programs (nrobps) on functions expressible as cnfs with treewidth at most k of their primal graphs. This lower bound rules out the possibility of fixed-parameter space complexity of nrobps parameterized by k. We use lower bound for nrobps to obtain a quasi-polynomial separation between Free Binary Decision Diagrams and Decision Decomposable Negation Normal Forms, essentially matching the existing upper bound introduced by Beame et al. (Proceedings of the twenty-ninth conference on uncertainty in artificial intelligence, Bellevue, 2013) and thus proving the tightness of the latter

    Counting dependent and independent strings

    Full text link
    The paper gives estimations for the sizes of the the following sets: (1) the set of strings that have a given dependency with a fixed string, (2) the set of strings that are pairwise \alpha independent, (3) the set of strings that are mutually \alpha independent. The relevant definitions are as follows: C(x) is the Kolmogorov complexity of the string x. A string y has \alpha -dependency with a string x if C(y) - C(y|x) \geq \alpha. A set of strings {x_1, \ldots, x_t} is pairwise \alpha-independent if for all i different from j, C(x_i) - C(x_i | x_j) \leq \alpha. A tuple of strings (x_1, \ldots, x_t) is mutually \alpha-independent if C(x_{\pi(1)} \ldots x_{\pi(t)}) \geq C(x_1) + \ldots + C(x_t) - \alpha, for every permutation \pi of [t]

    Circuit Complexity Meets Ontology-Based Data Access

    Full text link
    Ontology-based data access is an approach to organizing access to a database augmented with a logical theory. In this approach query answering proceeds through a reformulation of a given query into a new one which can be answered without any use of theory. Thus the problem reduces to the standard database setting. However, the size of the query may increase substantially during the reformulation. In this survey we review a recently developed framework on proving lower and upper bounds on the size of this reformulation by employing methods and results from Boolean circuit complexity.Comment: To appear in proceedings of CSR 2015, LNCS 9139, Springe

    Filamentation with nonlinear Bessel vortices

    No full text
    International audienceWe present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propa-gation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and non-linear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics. OCIS codes: (190.7110) Ultrafast nonlinear optics; (190.5940) Self-action effects; (190.3270) Kerr effect

    Finding the Median (Obliviously) with Bounded Space

    Full text link
    We prove that any oblivious algorithm using space SS to find the median of a list of nn integers from {1,...,2n}\{1,...,2n\} requires time Ω(nloglogSn)\Omega(n \log\log_S n). This bound also applies to the problem of determining whether the median is odd or even. It is nearly optimal since Chan, following Munro and Raman, has shown that there is a (randomized) selection algorithm using only ss registers, each of which can store an input value or O(logn)O(\log n)-bit counter, that makes only O(loglogsn)O(\log\log_s n) passes over the input. The bound also implies a size lower bound for read-once branching programs computing the low order bit of the median and implies the analog of PNPcoNPP \ne NP \cap coNP for length o(nloglogn)o(n \log\log n) oblivious branching programs

    Partial Covering Arrays: Algorithms and Asymptotics

    Full text link
    A covering array CA(N;t,k,v)\mathsf{CA}(N;t,k,v) is an N×kN\times k array with entries in {1,2,,v}\{1, 2, \ldots , v\}, for which every N×tN\times t subarray contains each tt-tuple of {1,2,,v}t\{1, 2, \ldots , v\}^t among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound CAN(t,k,v)\mathsf{CAN}(t,k,v), the minimum number NN of rows of a CA(N;t,k,v)\mathsf{CA}(N;t,k,v). The well known bound CAN(t,k,v)=O((t1)vtlogk)\mathsf{CAN}(t,k,v)=O((t-1)v^t\log k) is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set {1,2,,v}t\{1, 2, \ldots , v\}^t need only be contained among the rows of at least (1ϵ)(kt)(1-\epsilon)\binom{k}{t} of the N×tN\times t subarrays and (2) the rows of every N×tN\times t subarray need only contain a (large) subset of {1,2,,v}t\{1, 2, \ldots , v\}^t. In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time
    corecore