428 research outputs found

    Paramagnetic tunneling systems and their contribution to the polarization echo in glasses (extended)

    Full text link
    Startling magnetic effects on the spontaneous polarization echo in some silicate glasses at low and ultra-low temperatures have been reported in the last decade or so. Though some progress in search of an explanation has been made by considering the nuclear quadrupole dephasing of tunneling particles, here we show that the effect of a magnetic field can be understood quantitatively by means of a special tunnel mechanism associated with paramagnetic impurities. For the Fe-, Cr- and Nd-contaminated glasses we provide reasonable fits to the published data as a function of applied magnetic field and temperature

    Critical renormalized coupling constants in the symmetric phase of the Ising models

    Full text link
    Using a novel finite size scaling Monte Carlo method, we calculate the four, six and eight point renormalized coupling constants defined at zero momentum in the symmetric phase of the three dimensional Ising system. The results of the 2D Ising system that were directly measured are also reported. Our values of the six and eight point coupling constants are significantly different from those obtained from other methods.Comment: 7 pages, 2 figure

    Soil compaction alleviation as a solution in the climate stress mitigation

    Get PDF
    Tillage-induced soil compaction has often occurred in the Pannonian region. This form of compaction occurs on arable lands both in Hungary (1.82 million ha) and in Croatia (0.97 million ha) having negative impacts on crop production. In this study the tillage-induced compaction is discussed as an indicator of climate stress on arable fields. The research is based on soil condition monitoring and measuring that was started 32 years ago and on short and long-term experiments assessing the compaction impacts on the crops. The survey comprised 1870 monitoring places and 38 experimental plots. The following points were chosen for monitoring: 1. Root zone state (to a depth of 0-50 cm). 2. Occurrence of compacted layer (indicating the risk). 3. Extension of the compacted layer (indicating the degree of damage). 4. Long term effects of tillage (deterioration or improvement). 5. Tillage-induced drought and water-logging damage impacts on yield loss. The formation and location of compaction provided information concerning the depth, the method and the type of tillage applied, along with the expected risk for crop production under extreme climate conditions. The main objectives of the study are: 1. Occurrence and the extent of tillage-pan compaction in soils. 2. Consequences on water management in each of the years covered by the experiments. 3. Soil quality consequences. 4. Alleviation of pan-compaction by mechanical and biological methods. Long-term assessing has convincingly proven a correlation between tillage-pan compaction and the degree of climate stress. In view of the findings trends in soil tillage can be grouped into the following categories: climate damage mitigating and climate-stress increasing ones

    Review of the ELI-NP-GBS low level rf and synchronization systems

    Get PDF
    The Gamma Beam System (GBS) of ELI-NP is a linac based gamma-source in construction at Magurele (RO) by the European consortium EuroGammaS led by INFN. Photons with tunable energy and with intensity and brilliance well beyond the state of the art will be produced by Compton back-scattering between a high quality electron beam (up to 740 MeV) and a 515 nm intense laser pulse. Production of very intense photon flux with narrow bandwidth requires multi-bunch operation at 100 Hz repetition rate. A total of 13 klystrons, 3 S-band (2856 MHz) and 10 C-band (5712 MHz) will power a total of 14 Travelling Wave accelerating sections (2 S-band and 12 C-band) plus 3 S-band Standing Wave cavities (a 1.6 cell RF gun and 2 RF deflectors). Each klystron is individually driven by a temperature stabilized LLRF module, for a maximum flexibility in terms of accelerating gradient, arbitrary pulse shaping (e.g. to compensate beam loading effects in multi-bunch regime) and compensation of long-term thermal drifts. In this paper, the whole LLRF system architecture and bench test results, the RF reference generation and distribution together with an overview of the synchronization system will be described

    Realistic Tunneling States for the Magnetic Effects in Non-Metallic Real Glasses

    Full text link
    The discovery of magnetic and compositional effects in the low temperature properties of multi-component glasses has prompted the need to extend the standard two-level systems (2LSs) tunneling model. A possible extension \cite{Jug2004} assumes that a subset of tunneling quasi-particles is moving in a three-welled potential (TWP) associated with the ubiquitous inhomogeneities of the disordered atomic structure of the glass. We show that within an alternative, cellular description of the intermediate-range atomic structure of glasses the tunneling TWP can be fully justified. We then review how the experimentally discovered magnetic effects can be explained within the approach where only localized atomistic tunneling 2LSs and quasi-particles tunneling in TWPs are allowed. We discuss the origin of the magnetic effects in the heat capacity, dielectric constant (real and imaginary parts), polarization echo and SQUID magnetization in several glassy systems. We conclude by commenting on a strategy to reveal the mentioned tunneling states (2LSs and TWPs) by means of atomistic computer simulations and discuss the microscopic nature of the tunneling states in the context of the potential energy landscape of glass-forming systems.Comment: 48 pages, 27 figures; mini-review for the Proceedings of the XIV International Workshop on Complex Systems (Fai della Paganella, Trento, March 2015) (submitted to Phil.Mag.). arXiv admin note: text overlap with arXiv:cond-mat/0210221 by other author

    Vortex Quantum Nucleation and Tunneling in Superconducting Thin Films: Role of Dissipation and Periodic Pinning

    Full text link
    We investigate the phenomenon of decay of a supercurrent in a superconducting thin film in the absence of an applied magnetic field. The resulting zero-temperature resistance derives from two equally possible mechanisms: 1) quantum tunneling of vortices from the edges of the sample; and 2) homogeneous quantum nucleation of vortex-antivortex pairs in the bulk of the sample, arising from the instability of the Magnus field's ``vacuum''. We study both situations in the case where quantum dissipation dominates over the inertia of the vortices. We find that the vortex tunneling and nucleation rates have a very rapid dependence on the current density driven through the sample. Accordingly, whilst normally the superconductor is essentially resistance-free, for the high current densities that can be reached in high-TcT_c films a measurable resistance might develop. We show that edge-tunneling appears favoured, but the presence of pinning centres and of thermal fluctuations leads to an enhancement of the nucleation rates. In the case where a periodic pinning potential is artificially introduced in the sample, we show that current-oscillations will develop indicating an effect specific to the nucleation mechanism where the vortex pair-production rate, thus the resistance, becomes sensitive to the corrugation of the pinning substrate. In all situations, we give estimates for the observability of the studied phenomena.Comment: 8 pages (LaTeX), 2 postscript figures. Invited talk to the SATT8 (8th Italian Meeting on High-T_c Superconductivity), Como (Italy), Villa Olmo, 1-4 October 1996, to be published in La Rivista del Nuovo Cimento

    Microscopic Oscillations in the Quantum Nucleation of Vortices Subject to Periodic Pinning Potential in a Thin Superconductor

    Full text link
    We present a theory for the decay of a supercurrent through nucleation of vortex-antivortex pairs in a two-dimensional superconductor in the presence of dissipation and of a periodic pinning potential. Through a powerful quantum electrodynamics formulation of the problem we show that the nucleation rate develops oscillations in its current-density dependence which are connected to the pinning periodicity. A remnant of the dissipation-driven localization transition is present, and an estimate of the nucleation rate suggests that these effects might be observable in real thin superconductors.Comment: REVTeX file, 4 pages in two-column mode, 1 Postscript figure, to appear in Phys.Rev.B (Rapid Communications

    Direct Evidence for a Two-component Tunnelling Mechanism in the Multicomponent Glasses at Low Temperatures

    Full text link
    The dielectric anomalies of window-type glasses at low temperatures (T<T< 1 K) are rather successfully explained by the two-level systems (2LS) tunneling model (TM). However, the magnetic effects discovered in the multisilicate glasses in recent times \cite{ref1}-\cite{ref3}, and also some older data from mixed (SiO2_2)1−x_{1-x}(K2_2O)x_x and (SiO2_2)1−x_{1-x}(Na2_2O)x_x glasses \cite{ref4}, indicate the need for a suitable generalization of the 2LS TM. We show that, not only for the magnetic effects \cite{ref3,ref5} but also for the mixed glasses in the absence of a field, the right extension of the 2LS TM is provided by the (anomalous) multilevel tunneling systems approach proposed by one of us. It appears that new 2LS develop via dilution near the hull of the SiO4_4-percolating clusters in the mixed glasses.Comment: 4 pages, 4 figures, submitted for publicatio

    Duality symmetry, strong coupling expansion and universal critical amplitudes in two-dimensional \Phi^{4} field models

    Full text link
    We show that the exact beta-function \beta(g) in the continuous 2D g\Phi^{4} model possesses the Kramers-Wannier duality symmetry. The duality symmetry transformation \tilde{g}=d(g) such that \beta(d(g))=d'(g)\beta(g) is constructed and the approximate values of g^{*} computed from the duality equation d(g^{*})=g^{*} are shown to agree with the available numerical results. The calculation of the beta-function \beta(g) for the 2D scalar g\Phi^{4} field theory based on the strong coupling expansion is developed and the expansion of \beta(g) in powers of g^{-1} is obtained up to order g^{-8}. The numerical values calculated for the renormalized coupling constant g_{+}^{*} are in reasonable good agreement with the best modern estimates recently obtained from the high-temperature series expansion and with those known from the perturbative four-loop renormalization-group calculations. The application of Cardy's theorem for calculating the renormalized isothermal coupling constant g_{c} of the 2D Ising model and the related universal critical amplitudes is also discussed.Comment: 16 pages, REVTeX, to be published in J.Phys.A:Math.Ge

    Critical behavior of weakly-disordered anisotropic systems in two dimensions

    Full text link
    The critical behavior of two-dimensional (2D) anisotropic systems with weak quenched disorder described by the so-called generalized Ashkin-Teller model (GATM) is studied. In the critical region this model is shown to be described by a multifermion field theory similar to the Gross-Neveu model with a few independent quartic coupling constants. Renormalization group calculations are used to obtain the temperature dependence near the critical point of some thermodynamic quantities and the large distance behavior of the two-spin correlation function. The equation of state at criticality is also obtained in this framework. We find that random models described by the GATM belong to the same universality class as that of the two-dimensional Ising model. The critical exponent ν\nu of the correlation length for the 3- and 4-state random-bond Potts models is also calculated in a 3-loop approximation. We show that this exponent is given by an apparently convergent series in ϵ=c−12\epsilon=c-\frac{1}{2} (with cc the central charge of the Potts model) and that the numerical values of ν\nu are very close to that of the 2D Ising model. This work therefore supports the conjecture (valid only approximately for the 3- and 4-state Potts models) of a superuniversality for the 2D disordered models with discrete symmetries.Comment: REVTeX, 24 pages, to appear in Phys.Rev.
    • …
    corecore