6 research outputs found

    Subdiffusive Exciton Transport in Quantum Dot Solids

    No full text
    Colloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement. Moreover, we show experimentally and through kinetic Monte Carlo simulations that exciton diffusion in QD solids does not occur by a random-walk process; instead, energetic disorder within the inhomogeneously broadened ensemble causes the exciton diffusivity to decrease over time. These findings reveal new insights into exciton dynamics in disordered systems and demonstrate the flexibility of QD materials for photonic and optoelectronic applications

    Temperature dependence of acoustic vibrations of CdSe and CdSe–CdS core–shell nanocrystals measured by low-frequency Raman spectroscopy

    No full text
    We measure the temperature dependence of breathing-mode acoustic vibrations of semiconductor nanocrystals using low-frequency Raman spectroscopy. In CdSe core-only nanocrystals, the lowest-energy l = 0 mode red-shifts with increasing temperature by ∌5% between 77–300 K. Changes to the interatomic bond distances in the inorganic crystal lattice, with corresponding changes to the bulk modulus and density of the material, contribute to the observed energy shift but do not fully explain its magnitude across all nanocrystal sizes. Invariance of the Raman linewidth over the same temperature range suggests that the acoustic breathing mode is inhomogeneously broadened. The acoustic phonons of CdSe/CdS core–shell composite nanocrystals display similar qualitative behavior. However, for large core–shell nanocrystals, we observe a higher-order Raman peak at approximately twice the energy of the l = 0 mode, which we identify as a higher spherical harmonic—the n = 2, l = 0 eigenmode—rather than a two-phonon scattering event.Eni-MIT Solar Frontiers CenterEni S.p.A
    corecore