188 research outputs found

    Los empleos de las cenizas volantes en construcción

    Get PDF
    Not availableActualmente, en el mercado francés hay dos tipos de cementos que contienen cenizas volantes: los cementos puzolano metalúrgicos Fouilloux y los cementos portland con 20% de cenizas, cuya normalización está en curso

    Performance Evaluation of HL-LHC Crab Cavity Prototypes in a CERN Vertical Test Cryostat

    Get PDF
    Three proof-of-principle compact crab cavity designs have been fabricated in bulk niobium and cold tested at their home labs, as a first validation step towards the High Luminosity LHC project. As a cross check, all three bare cavities have been retested at CERN, in order to cross check their performance, and cross-calibrate the CERN SRF cold test facilities. While achievable transverse deflecting voltage is the key performance indicator, secondary performance aspects derived from multiple cavity monitoring systems are also discussed. Temperature mapping profiles, quench detection, material properties, and trapped magnetic flux effects have been assessed, and the influence on performance discussed. The significant effort invested in developing expertise in preparation and testing of these crab cavities has already been fruitful for all partners, and more is to come within this ongoing program

    Itinerant effects and enhanced magnetic interactions in Bi-based multilayer cuprates

    Get PDF
    The cuprate high temperature superconductors exhibit a pronounced trend in which the superconducting transition temperature Tc increases with the number of CuO2 planes n in the crystal structure. We compare the magnetic excitation spectrum of Bi2+xSr2−xCuO6+δ (Bi-2201) and Bi2Sr2Ca2Cu3O10+δ (Bi-2223), with n = 1 and 3, respectively, using Cu L3-edge resonant inelastic x-ray scattering. Near the antinodal zone boundary we find the paramagnon energy in Bi-2223 is substantially higher than that in Bi-2201, indicating that multilayer cuprates host stronger effective magnetic exchange interactions, providing a possible explanation for the Tc vs n scaling. In contrast, the nodal direction exhibits very strongly damped, almost nondispersive excitations. We argue that this implies that the magnetism in the doped cuprates is partially itinerant in nature

    Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications

    Get PDF
    We present the results of the characterization of Mg/Co periodic multilayers and their thermal stability for the EUV range. The annealing study is performed up to a temperature of 400\degree C. Images obtained by scanning transmission electron microscopy and electron energy loss spectroscopy clearly show the good quality of the multilayer structure. The measurements of the EUV reflectivity around 25 nm (~49 eV) indicate that the reflectivity decreases when the annealing temperature increases above 300\degreeC. X-ray emission spectroscopy is performed to determine the chemical state of the Mg atoms within the Mg/Co multilayer. Nuclear magnetic resonance used to determine the chemical state of the Co atoms and scanning electron microscopy images of cross sections of the Mg/Co multilayers reveal changes in the morphology of the stack from an annealing temperature of 305\degreee;C. This explains the observed reflectivity loss.Comment: Published in Applied Physics A: Materials Science \& Processing Published at http://www.springerlink.com.chimie.gate.inist.fr/content/6v396j6m56771r61/ 21 page

    The "MINOTOR" H2020 project for ECR thruster development

    Get PDF
    Electric propulsion has been identified by European actors as a strategic technology for improving competitiveness in different space areas such as in-space operations and transportation. The European Commission has set up the "In-space Electrical Propulsion and Station-Keeping" Strategic Research Cluster (SRC) in the "Horizon 2020" funding framework with the goal of enabling major advances in Electric Propulsion for in-space operations and transportation. In this framework, the MINOTOR project was funded to mature a potentially disruptive cathodeless electric propulsion technology, the Electron Cyclotron Resonance (ECR) thruster. In recent years, the consortium leader ONERA has built up a large experience on ECR technology for electric propulsion, and the MINOTOR project will bring the expertise from three industrial partners (TMI, TAS-B and SAFRAN) and two university partners (UC3M and JLU) to take the next step.This work was made in the framework of project MINOTOR that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730028

    Microscopic Relaxation Channels in Materials for Superconducting Qubits

    Full text link
    Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we perform measurements of transmon qubit relaxation times T1T_1 in parallel with spectroscopy and microscopy of the thin polycrystalline niobium films used in qubit fabrication. By comparing results for films deposited using three techniques, we reveal correlations between T1T_1 and grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Physical mechanisms connect these microscopic properties to residual surface resistance and T1T_1 through losses arising from the grain boundaries and from defects in the suboxides. Further, experiments show that the residual resistance ratio can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance
    corecore