14,971 research outputs found

    Statistical characterization of phenolic-novolak structures

    Get PDF
    Three statistical methods of general validity are valuable for characterizing any polymer which results from chain polymerization of multifunctional branching monomers linked through bifunctional monomers

    Spin-orbit coupling induced by a mass gradient

    Get PDF
    The existence of a spin-orbit coupling (SOC) induced by the gradient of the effective mass in low-dimensional heterostructures is revealed. In structurally asymmetric quasi-two-dimensional semiconductor heterostructures the presence of a mass gradient across the interfaces results in a SOC which competes with the SOC created by the electric field in the valence band. However, in graded quantum wells subjected to an external electric field, the mass-gradient induced SOC can be finite even when the electric field in the valence band vanishes.Comment: 4 pages, 2 figures, 1 tabl

    Side-jumps in the spin-Hall effect: construction of the Boltzmann collision integral

    Get PDF
    We present a systematic derivation of the side-jump contribution to the spin-Hall current in systems without band structure spin-orbit interactions, focusing on the construction of the collision integral for the Boltzmann equation. Starting from the quantum Liouville equation for the density operator we derive an equation describing the dynamics of the density matrix in the first Born approximation and to first order in the driving electric field. Elastic scattering requires conservation of the total energy, including the spin-orbit interaction energy with the electric field: this results in a first correction to the customary collision integral found in the Born approximation. A second correction is due to the change in the carrier position during collisions. It stems from the part of the density matrix off-diagonal in wave vector. The two corrections to the collision integral add up and are responsible for the total side-jump contribution to the spin-Hall current. The spin-orbit-induced correction to the velocity operator also contains terms diagonal and off-diagonal in momentum space, which together involve the total force acting on the system. This force is explicitly shown to vanish (on the average) in the steady state: thus the total contribution to the spin-Hall current due to the additional terms in the velocity operator is zero.Comment: Added references, expanded discussion, revised introductio

    Spin relaxation in an InAs quantum dot in the presence of terahertz driving fields

    Full text link
    The spin relaxation in a 1D InAs quantum dot with the Rashba spin-orbit coupling under driving THz magnetic fields is investigated by developing the kinetic equation with the help of the Floquet-Markov theory, which is generalized to the system with the spin-orbit coupling, to include both the strong driving field and the electron-phonon scattering. The spin relaxation time can be effectively prolonged or shortened by the terahertz magnetic field depending on the frequency and strength of the terahertz magnetic field. The effect can be understood as the sideband-modulated spin-phonon scattering. This offers an additional way to manipulate the spin relaxation time.Comment: 8 pages, 1 figure, to be published in PR

    Anomalous Spin Polarization of GaAs Two-Dimensional Hole Systems

    Full text link
    We report measurements and calculations of the spin-subband depopulation, induced by a parallel magnetic field, of dilute GaAs two-dimensional (2D) hole systems. The results reveal that the shape of the confining potential dramatically affects the values of in-plane magnetic field at which the upper spin subband is depopulated. Most surprisingly, unlike 2D electron systems, the carrier-carrier interaction in 2D hole systems does not significantly enhance the spin susceptibility. We interpret our findings using a multipole expansion of the spin density matrix, and suggest that the suppression of the enhancement is related to the holes' band structure and effective spin j=3/2.Comment: 6 pages, 4 figures, substantially extended discussion of result

    Static inverters which sum a plurality of waves Patent

    Get PDF
    Describing static inverter with single or multiple phase outpu

    Ultrafast Magnetization Dynamics in Diluted Magnetic Semiconductors

    Get PDF
    We present a dynamical model that successfully explains the observed time evolution of the magnetization in diluted magnetic semiconductor quantum wells after weak laser excitation. Based on the pseudo-fermion formalism and a second order many-particle expansion of the exact p-d exchange interaction, our approach goes beyond the usual mean-field approximation. It includes both the sub-picosecond demagnetization dynamics and the slower relaxation processes which restore the initial ferromagnetic order in a nanosecond time scale. In agreement with experimental results, our numerical simulations show that, depending on the value of the initial lattice temperature, a subsequent enhancement of the total magnetization may be observed within a time scale of few hundreds of picoseconds.Comment: Submitted to PR

    Spin Density Matrix of Spin-3/2 Hole Systems

    Full text link
    For hole systems with an effective spin j=3/2, we present an invariant decomposition of the spin density matrix that can be interpreted as a multipole expansion. The charge density corresponds to the monopole moment and the spin polarization due to a magnetic field corresponds to a dipole moment while heavy hole-light hole splitting can be interpreted as a quadrupole moment. For quasi two-dimensional hole systems in the presence of an in-plane magnetic field B the spin polarization is a higher-order effect that is typically much smaller than one even if the minority spin subband is completely depopulated. On the other hand, the field B can induce a substantial octupole moment which is a unique feature of j=3/2 hole systems.Comment: 8 pages, 1 figure, 3 table
    • …
    corecore