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We present a systematic derivation of the side-jump contribution to the spin Hall current in systems without
band-structure spin-orbit interactions, focusing on the construction of the collision integral for the Boltzmann
equation. Starting from the quantum Liouville equation for the density operator we derive an equation describ-
ing the dynamics of the density matrix in the first Born approximation and to first order in the driving electric
field. Elastic scattering requires conservation of the total energy, including the spin-orbit interaction energy
with the electric field: this results in a first correction to the customary collision integral found in the Born
approximation. A second correction is due to the change in the carrier position during collisions. It stems from
the part of the density-matrix off-diagonal in wave vector. The two corrections to the collision integral add up
and are responsible for the total side-jump contribution to the spin Hall current. The spin-orbit-induced cor-
rection to the velocity operator also contains terms diagonal and off-diagonal in momentum space, which
together involve the total force acting on the system. This force is explicitly shown to vanish �on the average�
in the steady state: thus the total contribution to the spin Hall current due to the additional terms in the velocity
operator is zero.
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I. INTRODUCTION

Semiconductor spin electronics is an active area of re-
search in which both theory and experiment have made sub-
stantial progress during the past decade.1,2 The recent focus
on electrically induced phenomena in systems with spin-orbit
interactions has brought to light many unexplored and fasci-
nating facets of semiconductor physics. Considerable
progress has been made in past years in the electrical ma-
nipulation of spins in semiconductors, where experimental
and theoretical work have yielded the prediction3–9 and dis-
covery of the spin Hall effect.10–13 The spin Hall effect,1,8

which is the main focus of this paper, is the generation of a
transverse spin current9,14 as a response to an external elec-
tric field. Such a spin current leads to a spin accumulation at
the edges of the sample, and the relationship between spin
currents and spin accumulation is nontrivial.15,16 The first
observations of the spin Hall effect were followed by the
measurement of the spin Hall effect at room temperature by
optical techniques17 and the first successful measurement of
the spin Hall effect in transport in ballistic HgTe/HgCdTe
quantum wells.18

Two main mechanisms have been shown to be responsible
for the spin Hall effect. The presence of spin-orbit coupling
in the impurity potentials gives rise to contributions to the
spin Hall effect which are termed extrinsic.3–5,15,19–25 The
spin Hall effect observed in Refs. 10 and 11 was shown by
Engel et al.,19 Tse and Das Sarma,20 and Hankiewicz and
Vignale23 to be due to extrinsic mechanisms. Band structure
spin-orbit interactions yield contributions termed
intrinsic.6,7,26–28 The spin Hall effect observed in Refs. 12
and 18 is believed to be due to intrinsic mechanisms. Extrin-
sic and intrinsic mechanisms were broadly discussed in the
context of the anomalous Hall effect, which is the generation
of a transverse charge and spin-polarization current in re-

sponse to an electric field in a ferromagnetic medium.29–44 In
fact, extrinsic contributions to the anomalous Hall and spin
Hall effects are closely related.19,20 The interplay of intrinsic
and extrinsic contributions is a complicated problem. It was
first addressed by Tse and Das Sarma45 using an approach
based on the diagrammatic Kubo formula. This was followed
by a series of publications46–48 and this topic continues to be
an active area of research. However, our focus in this work is
on the case of extrinsic spin-orbit interactions alone and spe-
cifically the way they may be obtained from a kinetic equa-
tion approach.

Extrinsic contributions to the spin current are of two
kinds. The first and more intuitive contribution arises from
the asymmetric scattering of up and down spins known as
skew scattering. This effect is found beyond the first Born
approximation, i.e., provided one goes to at least third order
in the electron-impurity potential.19,20,33 The effect appears
naturally in the standard Boltzmann collision integral23,37

provided one goes beyond the first Born approximation. The
associated spin Hall conductivity scales with disorder as the
ordinary Drude conductivity19,20 �i.e., proportional to the
electron-impurity scattering time�, although it is of course
much smaller.

The second extrinsic contribution has been known in the
literature as side jump and has two main characteristics: �i� it
appears already in the first Born approximation for the
electron-impurity potential, and �ii� the associated spin Hall
conductivity is independent of the electron-impurity scatter-
ing time—a surprising universality which will be fully ex-
plained below. In contrast to skew scattering, the side-jump
mechanism cannot be derived straightforwardly from the
standard form of the Boltzmann equation. Very early on,
Luttinger30 calculated the side-jump contribution to the
charge conductivity using a recursive density-matrix ap-
proach, providing a thorough calculation yet leaving many
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questions unanswered concerning the physical picture behind
different contributions. Later, Berger34,35 used a wave-packet
formalism to build a semiclassical picture of side jump, iden-
tifying it with a shift of the center of mass of the wave packet
during collisions. Nozières and Lewiner37 used this picture
and carefully studied the side-jump contributions within a
Boltzmann approach. These authors accounted for six contri-
butions, some of which cancel each other; yet they did not
associate any physical interpretation with the cancellations.
In Ref. 15 the skew-scattering and side-jump terms were
identified also within the framework of a drift-diffusion ap-
proach. In Ref. 23 it was claimed that the proper way to
describe the side-jump effect is to replace the band energy in
the usual Boltzmann collision integral by a modified band
energy which includes corrections due to the spin-orbit inter-
action with the electric field. However, the validity of this
claim has not been formally shown to date. Skew scattering
and side jump were rigorously studied by Tse and Das
Sarma20 using a diagrammatic Kubo formalism, demonstrat-
ing that the side-jump term can be identified with an anoma-
lous current which gives rise to a renormalization of the cur-
rent vertex. A derivation based on the Kubo formula was also
presented in Ref. 49, finding that the side-jump contribution
for the conduction band is independent of disorder and of the
Coulomb potential to all orders in the strength of these inter-
actions.

The purpose of this paper is to show a rigorous alternative
derivation of the side jump within the framework of the ki-
netic equation, which does not require intuitive approaches
and follows cleanly and clearly from the Boltzmann equation
provided one constructs the collision integral with care. This
construction, however, requires that we go beyond the Bolt-
zmann equation formalism and resort to the full quantum
Liouville equation for the one-particle density matrix, which
we treat to second order in the electron-impurity potential
and to first order in the electric field. In order to focus on the
essential physics, we assume that band structure spin-orbit
interactions are negligible. Thus we only take into account
spin-orbit interactions with the impurities and with the exter-
nal electric field that drives the current. In the present work,
we first derive a general kinetic equation including the col-
lision integral, then we solve the kinetic equation by separat-
ing the density matrix into equilibrium and nonequilibrium
parts. Transport studies frequently perform these steps in the
opposite order. Yet we find that our choice is more transpar-
ent for the present work.

Starting from the quantum Liouville equation we show
rigorously that the conservation of energy in the Boltzmann
collision integral must be modified to include the effective
band energy, i.e., the bare band energy plus the spin-orbit
interaction with the electric field. This modification is re-
flected in the appearance of a correction to the scattering
term usually found in the Born approximation. This addi-
tional term, which is spin dependent and linear in the electric
field, acts as a source for the spin current, yielding one half
of the side-jump contribution.

The other half emerges when one takes into account the
change in the position of the particle during collisions with
impurities. The semiclassical picture of the renormalization
of the trajectory of the electron during collisions will be de-

rived rigorously from the scattering of electrons off the im-
purity potential which involves the terms off-diagonal in the
wave vector in the density matrix. It turns out that this pro-
cess and the modified conservation of energy give equal con-
tributions to the spin Hall current, so that the full side-jump
contribution can indeed be obtained by including twice the
spin-orbit interaction energy with the electric field in the �
function of conservation of energy in the ordinary Boltzmann
collision integral, as suggested previously in Ref. 23. How-
ever, the present derivation is rigorous and constitutes formal
validation of this heuristic approach. We note that the factor
of 2 emerges naturally from the diagrammatic Kubo formula,
as demonstrated in Ref. 20, when one takes into account the
vertex renormalization of the spin and charge currents.

In addition to constructing the picture of side jump out-
lined above, the analysis expounded in this work supports
the argument that the full velocity operator contains the net
force acting on the system, which must vanish on physical
grounds.23 To provide a formal derivation of this fact, we
show that the total contribution of the additional terms in the
velocity operator to the spin Hall current is indeed zero. This
is due to the fact that the velocity operator contains a spin-
dependent term linear in the electric field, which reflects the
spin-orbit interaction with the electric field, as well as an
additional spin-dependent term off-diagonal in wave vector,
which reflects the spin-orbit interaction with the impurities.
The importance of this latter term was recognized already in
diagrammatic linear-response theory in Ref. 20. Within the
kinetic equation formalism, the two terms in the velocity
operator produce equal and opposite contributions to the spin
Hall current which cancel each other out. The physical inter-
pretation of this fact is that, in the steady state, the average
force acting on an electron must vanish.

In this paper, therefore, we strive to provide an under-
standing of the side-jump mechanism in the absence of in-
trinsic spin precession due to band-structure spin-orbit cou-
pling, which is rigorous and at the same time physical. We
believe that a rigorous physical understanding is a first step
toward building a consistent picture, within the kinetic equa-
tion framework, of the interplay of spin precession due to
band-structure spin-orbit coupling and spin-orbit coupling
due to impurities. This interplay has been studied by Tse and
Das Sarma45 based on a diagrammatic linear-response ap-
proach and by Hu et al.46 numerically. More recently Hank-
iewicz and Vignale47 constructed a phase diagram of this
problem while Raimondi and Schwab48 employed a Keldysh
Green’s-function technique. The long-term aim of this work
is to build a rigorous understanding, based on the kinetic
equation, of intrinsic spin precession, skew scattering and
side jump on an equal footing.

This article is organized as follows. In Sec. II a kinetic
equation is derived starting from the quantum Liouville
equation for the density operator. In Sec. III we explicitly
construct the collision integral, including all contributions in
the first Born approximation arising from the modification of
the position operator. Section IV discusses the contributions
of the side-jump mechanism to the spin Hall effect. It dem-
onstrates that the corrections to the velocity operator do not
contribute to the spin current. We end with conclusions.
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II. TIME EVOLUTION OF THE DENSITY MATRIX

We outline in this section the formalism that will be used
to determine the collision integral and the way it gives rise to
the side-jump spin Hall current. The system is described by a
density operator �̂, which obeys the quantum Liouville equa-
tion

d�̂

dt
+

i

�
�Ĥ0 + ĤE + ĤU, �̂� = 0. �1�

In this equation

Ĥ0 =
�2k̂2

2m�
�2�

is the Hamiltonian for a parabolic conduction band, with m�

the carrier effective mass, while

ĤE = eE · r̂ + �eE · �̂ � k̂ �3a�

�eE · r̂ +
1

2
�̂ · �̂k �3b�

represents the interaction with a constant uniform external

electric field E. The term ĤE includes both the direct inter-
action and the interaction via the �material-dependent� spin-

orbit coupling of strength �. We have used the notation �̂k

=2�ek̂�E for the effective field characterizing the spin-
dependent part of this interaction, a term which, as we shall
see later, gives rise to one half of the side-jump contribution
to the spin Hall conductivity. Finally

ĤU = U�r̂� + � � U�r̂� · �̂ � k̂ �4�

denotes the interaction with a set of randomly distributed
impurities, again both directly and via spin-orbit coupling. In
order for the scalar part of the potential to exceed its spin-
dependent part we require �kF

2 �1.
We project the Liouville equation onto a set of time-

independent states ��ks�	 of definite wave vector k and spin
orientation s= �1 along the z axis. The matrix elements of �̂
in this basis form the spin-density matrix and are written as

�kk���kk�
ss� = 
ks��̂�k�s�� with corresponding notations for the

matrix elements of Ĥ0, ĤE, and ĤU. We assume that impuri-
ties are uncorrelated and the normalization is such that the

configurational average of 
ks�ĤU�k�s��
k�s��ĤU�ks� is

�ni /V��Ūkk��
2�ss�, where ni is the impurity density, V the crys-

tal volume, and

Ūkk� = Ukk��1 − i�� · k � k�� . �5�

Here Ukk� are the matrix elements of the electron-impurity

potential U�r̂� between plane waves while Ūkk� is reserved
for the total potential of a single impurity including the spin-
orbit contribution. In what follows spin indices will be sup-
pressed and all quantities are assumed to be matrices in spin

space. Note that we use the convention that Ūkk� and Ukk�
have units of energy�volume.

The density matrix �̂ is divided into a part diagonal in k
and a part off-diagonal in k, given by �kk�= fk�kk�+gkk�.
These two parts of �̂ satisfy a set of coupled equations

dfk

dt
+

i

�
�Ĥ, f̂�kk = −

i

�
�ĤU, ĝ�kk �6a�

dgkk�

dt
+

i

�
�Ĥ, ĝ�kk� = −

i

�
�ĤU, f̂�kk� −

i

�
�ĤU, ĝ�kk�, �6b�

where Ĥ� Ĥ0+ ĤE. In the first Born approximation the solu-
tion to Eq. �6b� for gkk� is

gkk� = −
i

�
lim
	→0

��
0




dt�e−	t�e−iĤt�/��ĤU, f̂�t − t���eiĤt�/��kk�, �7�

where 	�0 is a regularization factor. We are considering
variations which are slow on the scale of the momentum

relaxation time, thus we approximate f̂�t− t�� in the integral

by f̂�t�,50 which is written simply as f̂ , and satisfies the equa-
tion

dfk

dt
+

i

�
�Ĥ, f̂�kk + Ĵ�fk� = 0, �8�

where the scattering term Ĵ�fk� is

Ĵ�fk� = �i/���ĤU, ĝ�kk �9a�

=
1

�2 lim
	→0

��
0




dt�e−	t��ĤU,e−iĤt�/��ĤU, f̂�eiĤt�/���kk. �9b�

Equations �8� and �9� describe the dynamics of the density
matrix and constitute the complete set of tools we require in
order to derive the kinetic equation satisfied by the density
matrix in an electric field, including the side-jump contribu-
tion to the scattering term due to the modification of the
position operator by the spin-orbit interaction.

III. DERIVATION OF THE COLLISION INTEGRAL

We want to evaluate further the collision integral �9�. For
this purpose, we decompose the matrix fk into a part scalar in
spin space and a spin-dependent part, thus fk=nk1+Sk, with 1
the identity matrix and Sk expressible in terms of the Pauli
matrices. We will show in the following that, to first order in
� and in the electric field, we can write the scattering term as

Ĵ�fk� = Ĵ0�nk� + Ĵsj
a �nk� + Ĵsj

b �nk� + Ĵ0�Sk� . �10�

The first of these terms comes from the band Hamiltonian Ĥ0
is a scalar in spin space and does not depend on � or on the
electric field. The second term reflects the fact that the total
energy must be conserved during scattering events, including
the second term in Eq. �3�. The third term comes from the
direct interaction with the electric field eE · r̂ and arises be-
cause r fails to commute with the spin-orbit interaction with
the impurities. Physically this reflects the change in r during
a collision with an impurity. The resulting variation in eE ·r
also contributes to the overall energy balance. Both Ĵsj

a �nk�
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and Ĵsj
b �nk� are spin dependent and are linear in � and the

electric field E. We will discuss each of the contributions in

turn below. The last scattering term, Ĵ0�Sk�, will be important
in the kinetic equation below in determining the steady-state
correction linear in E to the spin-dependent part of the den-
sity matrix, and thus to the spin Hall current.

A. Scattering correction due to the conservation of the
modified carrier energy

In Sec. III A we focus on the part of the scattering term
which is linear in the electric field and arises from the addi-

tion of the spin-orbit interaction with the electric field 1
2� ·�k

to the particle energy �0k��2k2 / �2m��. Since we are work-
ing to first order in � and in the electric field, in Sec. III A we
only need to consider the scalar part of the impurity poten-
tial, Ukk�. Moreover the time evolution operators in Sec.
III A include the side-jump energy 1

2� ·�k, but not the term
eE ·r, which will be considered in Sec. III B. The matrix

elements of Ĥ in the exponents of the time-evolution opera-
tors are thus diagonal in k.

Writing out all the terms in the double commutator, Eq.
�9b�, we find

1

�2 �ĤU,e−iĤt�/��ĤU, f̂�eiĤt�/��kk =
ni

�2� ddk�

�2�d �Ukk�e
−iHk�t�/�Uk�kfkeiHkt�/� − Ukk�e

−iHk�t�/�fk�Uk�keiHkt�/�

− e−iHkt�/�Ukk�fk�e
iHk�t�/�Uk�k + e−iHkt�/�fkUkk�e

iHk�t�/�Uk�k� , �11�

where Hk=�0k+ 1
2� ·�k and d is the dimensionality of the

system. By expanding the exponentials of Pauli matrices, the
product of time-evolution operators can be written, to first
order in �, as

e−iHk�t�/�eiHkt�/� = ei��0k−�0k��t�/��cos
�kt�

2�
cos

�k�t�

2�

− i� · �̂k� cos
�kt�

2�
sin

�k�t�

2�

+ i� · �̂k sin
�kt�

2�
cos

�k�t�

2�
 , �12�

where �̂k is a unit vector in �k direction.
The only task that remains is integration over the time

variable t�, giving a series of � functions reflecting energy
conservation. The overall result for this scattering term, to

first order in �, can be decomposed into a scalar part Ĵ0�nk�
independent of �, and spin-dependent parts Ĵsj

a �nk�+ Ĵ0�Sk�.
These parts may be written as follows:

Ĵ0�nk� =
ni

2�
� ddk�

�2�d �Ukk��
2�nk − nk������+ − �+�� + ���− − �−��

+ ���+ − �−�� + ���− − �+��� , �13a�

Ĵsj
a �nk� =

ni

2�
� ddk�

�2�d �Ukk��
2�nk − nk���� · ��̂k + �̂k��

�����+ − �+�� − ���− − �−���

+ � · ��̂k − �̂k������+ − �−�� − ���− − �+���	 ,

�13b�

Ĵ0�Sk� =
2ni

�
� ddk�

�2�d �Ukk��
2�Sk − Sk�����0k − �0k�� .

�13c�

The full energies ��=�0k��k /2 and ��� =�0k���k� /2,

where �k= ��k�. The scalar term Ĵ0�nk� reproduces the ordi-
nary Boltzmann-equation scattering term. The side-jump

term Ĵsj
a �nk� constitutes a correction that reflects the presence

of the spin-orbit interaction energy with the electric field in
the condition for energy conservation. We expand the � func-
tions in this scattering term in �k as

���+ − �+�� = ���0k − �0k�� + ��k

2
−

�k�

2
� �

��0k
���0k − �0k��

�14�

with corresponding expressions for the other combinations of
� functions. Adding all contributions together the scattering

term Ĵsj
a �nk� simplifies considerably and we obtain the final

expression

Ĵsj
a �nk� =

2ni

�
� ddk�

�2�d �Ukk��
2�nk − nk��

1

2
� · ��k − �k��

�
�

��0k
���0k − �0k�� . �15�

The presence of this scattering term reflects the fact that the
total energy including the spin-orbit interaction energy with
the electric field is conserved in elastic collisions.

B. Scattering correction due to the change in r during collisions

We have so far ignored the presence of the term eE · r̂ in
the time-evolution operator. At this stage we would like to
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determine the additional scattering term linear in E arising

from it, which we denote by Ĵsj
b �nk�. To accomplish this we

use Eq. �7� to find the correction gkk�
b to gkk� arising from the

presence of eE · r̂ in the time-evolution operator. Using Eq.

�9a� we will then obtain Ĵsj
b �nk� as �i /���ĤU , ĝb�kk.

Starting from Eq. �7�, we expand the time-evolution op-
erator to first order in the term eE · r̂. Using the matrix ele-
ments of the ordinary position operator r̂ between Bloch
states


k�r̂�k�� = i
�

�k
��k − k�� , �16�

we obtain additional terms of the form

t�e−i�0kt�eE ·
�

�k
��k − k�� = � i�

��0k
e−i�0kt��eE ·

�

�k
��k − k�� .

�17�

We integrate over t� as before, and after some lengthy but
straightforward algebra, we obtain

gkk�
b = − eE ·� ddk�

�2�d� �Ūkk�

�k
+

�Ūkk�

�k�
�

��nk − nk��
�

��0k
���0k − �0k�� . �18�

We have not written out explicitly a contribution to gkk�
b con-

taining terms of the form �nk /�k. We find that such terms
drop out in the final evaluation of spin currents when the
scattering potential is elastic, as a result of integrating over k
and k�. In the final analysis these terms involve the square

matrix element �Ūkk��
2 which does not have any contributions

linear in �. We find that the leading contribution due to these
terms is ��2 and may therefore be neglected. Evaluating the
k derivatives of the impurity potentials gives

�Ūkk�

�k
+

�Ūkk�

�k�
= − i�Ukk�� � �k − k�� . �19�

Substituting this into the Eq. �18� and subsequently evaluat-

ing Ĵsj
b �nk�= �i /���ĤU , ĝb�kk we obtain the scattering term

Ĵsj
b �nk� =

2nie�

�
� ddk�

�2�d �Uk�k�2�nk − nk��E · �

� �k − k��
�

��0k
���0k − �0k�� , �20�

which is easily seen to be exactly equal to Ĵsj
a �nk�. The sum of

these terms constitutes the total side-jump scattering term

Ĵsj�nk�= Ĵsj
a �nk�+ Ĵsj

b �nk�=2Ĵsj
a �nk�, which contains the well-

known factor of 2 associated with side jump.37 We empha-
size that we obtain this reinforcement of the side jump di-
rectly from the scattering term, and our work shows no
evidence that it is related in any direct way to the integral of
the velocity operator �see Eqs. �29� and �35� below� over the
time of a collision.19

IV. CONTRIBUTION OF THE SIDE-JUMP MECHANISM
TO THE SPIN HALL CURRENT

We have derived a contribution linear in the electric field
to the scattering term appearing in the kinetic equation. This
contribution is brought about by the spin-dependent interac-
tion of the charge carriers with the electric field due to the
spin-orbit interaction. In this section we will first evaluate
the correction that this term yields in the spin-dependent part
of the density matrix and we will show that this correction
accounts fully for the side-jump spin Hall current including
the important factor of 2.19,20,37 This is done in Sec. IV A. To
show that this is the only side-jump contribution to the spin
Hall effect, Sec. IV B will demonstrate that the modifications
to the velocity operator do not contribute any additional
terms to the spin current.

A. Contribution of the side-jump scattering term

We need to find the contribution to the spin Hall current

brought about by the additional scattering term Ĵsj�nk�. In
order to further evaluate Eq. �8� we let fk= f0k+ fEk, where
f0k��0k� is the Fermi-Dirac function, which is a scalar in spin
space in the case under study, and fEk is the correction we
will determine from the kinetic equation. First, the kinetic-
energy part of the Hamiltonian, �0k, drops out of the com-
mutator. Also, in the commutator � 1

2� ·�k , fk� we note that
1
2� ·�k is first order in the electric field, so the density matrix
can be replaced with the equilibrium Fermi-Dirac function,
which is a scalar in spin space, so � 1

2� ·�k , f0k�=0. More-

over, in the side-jump scattering term Ĵsj�nk�, which is also
first order in the electric field, we may replace nk by f0k.
Following some short and straightforward algebra, the side-
jump scattering term can be written as

Ĵsj�f0k� =
1

�p
� · �k��� − �F� , �21�

where �p is the usual momentum relaxation time.
Next, we decompose fEk into a part scalar in spin space

and a spin-dependent part, thus fEk=nEk1+SEk. The equation
for nEk in the steady state is the ordinary scalar Boltzmann

equation. The term �ĤE , f̂�k becomes �e /��E · ��f0 /�k� which
is a scalar and acts as the source term for nEk. We write the
scalar part of the Boltzmann equation as

Ĵ0�nEk� =
eE

�
·
� f0k

�k
, �22�

where the scattering term Ĵ0�nk� has been defined in Eq.
�13a�. The solution for nEk is written as

nEk =
�peE

�
·
� f0k

�k
=

��peE · k

m�

� f0k

��0k
. �23�

The equation for SEk in the steady state is Ĵ0�SEk�=−Ĵsj�f0k�,
in which the right-hand side, Ĵsj�f0k�, acts as a source term
for SEk. Substituting the explicit expressions for the two scat-
tering terms, this equation can be written in a simpler form
as
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SEk

�p
= −

1

�p
� · �k��� − �F� , �24�

and has the simple solution

SEk = − � · �k��� − �F� . �25�

We would like to draw attention to the fact that the additional
side-jump collision integral is part of the source for SEk. The
source term itself contains a factor of 1 /�p, which cancels the
1 /�p appearing on the left-hand side of the equation for SEk.
This explains why the end result for the side-jump contribu-
tion to the spin Hall current does not depend on the strength
and shape of the impurity potential.

Now that we have found the solution for SEk, in other
words the spin-dependent part of the density matrix in an
electric field, we can determine its contribution to the spin
Hall current. We denote the components of the spin velocity
as v j

i which corresponds to a spin component i flowing along
the direction j. In finding the contribution to the spin Hall
current due to SEk we can restrict ourselves to the term in the
spin velocity to zeroth order in the electric field, which is
v j

i = ��kj /m����i /2. For E= �Ex ,0 ,0� the side-jump Hamil-
tonian 1

2� ·�k becomes

e�E · � � k = − e�Exky�z, �26�

This gives a side-jump spin Hall current as a result of the
modification to the scattering term

jy
z �sct = ��

2
�� ddk

�2�d

�ky

m� tr��zSEk� = ne�Ex, �27�

where the trace is taken over the spin components and n is
the density. This term therefore gives a spin Hall conductiv-
ity �yx

z �sct=ne�, which is the usual side-jump term in the spin
Hall current.19,20,23,25,37,45 This result is valid in both two and
three dimensions.

B. Vanishing contribution of the corrections to the velocity
operator

It will be shown in Sec. IV B that the correction to the
velocity operator linear in the electric field does not yield
any additional terms in the spin Hall current. The velocity
operator is defined as the time derivative of the physical
position operator, which in turn is given by

r̂phys = r̂ + ��̂ � k̂ . �28�

Notice that all spin-orbit interactions can be most directly
derived by replacing r by rphys in the direct interactions and
expanding to first order in �. The requirement �kF

2 �1 no-
ticed above implies that the corrections emerging from the
second term in Eq. �28� will be small as compared with the
first term.

The velocity operator has a part which is diagonal in k
and is given by

vk = �i/���Ĥ, r̂phys�k

=
�k

m�
+

i

�
�e�E · �̂ � k̂, r̂�k +

i

�
�eE · r̂,��̂ � k̂�k

=
�k

m�
−

2e�

�
� � E . �29�

The k-diagonal part of the spin velocity v j
i, up to first order

in the electric field, is thus

v j
i =

�kj

m�

��i

2
−

e�

2
��� � E� j,�i	 , �30�

where �A ,B	�AB+BA. For an electric field along x̂ we ob-
tain for the k-diagonal part of the spin velocity vy

z the expres-
sion

vy
z =

�

2

�ky

m�
�z − e�Ex. �31�

The E-dependent part of the spin velocity operator is a scalar
in spin space and its contribution to the spin Hall current is
found by multiplying by the scalar part of the equilibrium
density matrix f0k. It gives us the term

jy
z �vel,d = − e�Ex� ddk

�2�d tr f0k = − ne�Ex �32�

so its contribution to the spin Hall conductivity is �yx
z �vel,d

=−ne�.
This is, however, not the full story. The velocity operator

also has a term that is off-diagonal in the wave vector, which
is referred to as vkk� and is given by

vkk� =
i

�
�ĤU, r̂phys�kk�. �33�

The matrix elements of the impurity potential are given by
Eq. �5�. The part of the matrix element vkk� originating from
r̂ is easily seen to be

i

�
�Û, r̂�kk� =

1

�
� �Ukk�

�k�
+

�Ukk�

�k
� . �34�

The disorder potential is the potential Û due to the full en-
semble of impurities present in the system. In the final result
for the spin Hall current, the k-off-diagonal part of the ve-
locity operator will be traced with the k-off-diagonal part of
the density matrix gkk�, which in the first Born approxima-

tion is also linear in Û. Once this is done, a configurational
average will be performed over the impurities. In the end we
seek the result to first order in �. However, it proves more

straightforward to work in terms of the full potential Û until
the end. Only then we will restrict ourselves to the terms
which are first order in �.

With these insights in mind we proceed, Eq. �33� yields

vkk� = −
2i�

�
� � �k − k��Ukk�, �35�

where we have written the matrix elements of the full
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potential Û. Note that this expression has not been aver-
aged over impurity configurations. This expression for the
k-off-diagonal part of the velocity operator holds because,
for elastic scattering, the scalar part of the scattering poten-
tial Ukk��U�k−k�� depends only on the difference k−k�. Its
contribution to the velocity operator is immediately seen to
be zero. This can also be understood by noting that the scalar
part of the impurity potential commutes with r and does not
contribute to the velocity.

The k-off-diagonal part of the velocity operator contrib-
utes to the side-jump spin Hall current. To find its contribu-
tion we return to Eq. �7� and integrate over time to find

gkk� = i���0k − �0k��Ukk��fk − fk�� . �36�

This expression also contains the matrix elements of the full
impurity potential and has not been averaged over impurity
configurations.

The contribution of the k-off-diagonal part of the velocity
operator to the spin current is found by taking the trace of the
spin velocity arising from Eq. �35� with the k-off-diagonal
part of the density matrix given in Eq. �36�. This yields for
the spin Hall current

jy
z �vel,od =

�

2
tr �z� ddk

�2�d� ddk�

�2�dvkk�
y gk�k

=− ����
2

�
� ddk

�2�d �kx − kx��
Ukk�Uk�k�

����0k� − �0k��fk − fk�� , �37�

where the bracket denotes the average over impurity configu-
rations. At this stage we introduce the simplification that we
require only terms to first order in �. We note that, since the
entire term in Eq. �37� already contains �, the other terms in
this equation are needed only to zeroth order in �. Consider
first the term proportional to kx, which, to first order in �, can
be written as

− ����� ddk

�2�dkx�2

�
� ddk�

�2�d 
Ukk�Uk�k�

����0k� − �0k��nk − nk��
= − ����� ddk

�2�dkxĴ0�nk�

=− ����� ddk

�2�dkx� eEx

�

� f0k

�kx
� , �38�

where the last replacement follows from the scalar Boltz-
mann equation, as written in Eq. �22�, assuming, as before,
that E � x̂. Further, Eq. �37� also contains a term proportional
to kx�, which is easily seen to give exactly the same contribu-
tion if one swaps k and k� in the summation. The contribu-
tion of the k-off-diagonal part of the velocity operator to the
spin Hall current to first order in � is therefore

jy
z �vel,od = − 2�eEx� ddk

�2�dkx
� f0k

�kx
= ne�Ex. �39�

The spin Hall conductivity originating from this term is
�yx

z �vel,od=ne� and it exactly cancels the contribution �yx
z �vel,d

from the k-diagonal E-dependent part of the velocity opera-
tor. The physical explanation of this cancellation is the fol-
lowing. Notice that the full spin-dependent part of the veloc-
ity operator, from Eqs. �29� and �35� is

−
2e�

�
� � E −

2i�

�
� � �k − k��Ukk� �40�

which contains the total force acting on the system. Accord-
ing to Ehrenfest’s theorem, the expectation values of position
and momentum obey time-evolution equations analogous to
those of classical mechanics. Consequently the expectation
value of the force should be zero in the steady state, consis-
tent with the earlier suggestion that the total force acting on
the system does not contribute to the spin current.23 We note
also that the presence of the velocity terms off-diagonal in
wave vector is crucial in obtaining the correct side-jump con-
tribution in the diagrammatic Kubo-formula approach, as
demonstrated in Ref. 20.

V. SUMMARY AND DISCUSSION

We have completed the formal derivation of the side-jump
spin Hall current, where we have considered �in the absence
of intrinsic spin precession� all contributions to the kinetic
equation in the first Born approximation. We will now dis-
cuss our findings and their implications. It is evident from
our analysis that, within the kinetic equation framework, the
side-jump spin Hall current originates solely from the modi-
fication of the Boltzmann collision integral due to the spin-
dependent interaction energy of an electron with the external
electric field and the impurity field. The density-matrix for-
mulation of the problem shows that the spin-orbit interaction
with the electric field alters the condition for energy conser-
vation since the total energy conserved during collisions
must include the spin-dependent part. In addition, the spin-
orbit coupling with the impurities causes a change in the
position of the electron during scattering process, which
again affects the energy balance via the interaction energy
eE ·r. This effect doubles the size of the side-jump current.

The understanding of the side-jump effect emerging from
this derivation differs from the conventional explanation, ac-
cording to which this phenomenon is attributed to the
linear-in-E modification of the velocity operator. It is clearly
seen in the previous section that the full velocity operator in
the presence of spin-orbit interactions contains an extra term
due to the impurity potential, which is off-diagonal in wave
vector. This term, and the k-diagonal velocity operator result
in two corrections to the spin current that are equal in mag-
nitude but opposite sign so they cancel out. This could be
justified informally using the fact that the velocity operator
contains the total force acting on the system �or rather the
term to leading order in � of this force�, and therefore should
vanish in the steady state.23 Therefore, contrary to conven-
tional assumptions, the side-jump contribution to the spin
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Hall current is traced to the qualitatively different carrier
spin dynamics during collisions. It is not traced to any
linear-in-E correction to the velocity operator. The
linear-in-E correction to the velocity operator is canceled by
the contribution of the off-diagonal in k correction to the
velocity operator. The importance of this off-diagonal-in-k
correction in the velocity operator in obtaining the correct
side-jump current was recognized in the diagrammatic Kubo-
formula approach as shown in Ref. 20.

We emphasize that in obtaining our results we have used
a rigorous quantum mechanical formulation, starting with the
quantum Liouville equation and making, in the course of the
derivation, the same assumptions that are characteristically
made in linear-response theory. Therefore our formalism
could in some sense be regarded as being built from the
ground up. The approach we have used demonstrates that the
derivation of the side jump does not need to rely on intuitive
semiclassical ideas as long as the collision integral is derived
rigorously from the fundamental starting point of all trans-
port theories. In contrast, Ref. 37 using semiclassical Boltz-
mann arguments counted six terms contributing to side jump,
but did not clearly indicate which terms should cancel. Since
for the conduction band the side-jump contributions have the
same magnitude but opposite signs, it led to freedom in
choosing which terms cancel and still obtaining the correct

amplitude of the side jump. For example, Ref. 19 counted the
terms from the anomalous velocity and the shift of the posi-
tion operator. Our analysis shows exactly which terms are
nonzero and which contributions cancel and is in agreement
with the Kubo derivation of side-jump contributions pre-
sented in Refs. 20 and 49. Our results are also in agreement
with recent extensive studies of the anomalous Hall effect in
magnetic semiconductors.42,44,51 In particular, Refs. 42 and
52, by comparing the semiclassical description of the side
jump with the Kubo and Keldysh formalisms, found that the
velocity operator is unchanged and that the two contributions
to the side jump have different origins due to the renormal-
ization of the distribution function and due to the modifica-
tion of the conservation of energy.
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