17 research outputs found

    Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    Get PDF
    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O<sub>3</sub> and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (<i>D</i><sub><i>p</i></sub>>100 nm) gives a linear relation up to a number concentration of ~150 cm<sup>−3</sup>, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol with <i>D</i><sub><i>p</i></sub>>100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the interstitial aerosol appears to have a background, upon which is superimposed a high frequency signal that contains the anti-correlation. The anti-correlation is a possible source of information on particle activation or evaporation

    Biomass burning and marine aerosol processing over the southeast Atlantic Ocean: a TEM single-particle analysis

    Get PDF
    This study characterizes single-particle aerosol composition from filters collected during the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) and CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) campaigns. In particular the study describes aged biomass burning aerosol (BBA), its interaction with the marine boundary layer and the influence of biomass burning (BB) air on marine aerosol. The study finds evidence of BBA influenced by marine boundary layer processing as well as sea salt influenced by BB air. Secondary chloride aerosols were observed in clean marine air as well as in BB-influenced air in the free troposphere. Higher-volatility organic aerosol appears to be associated with increased age of biomass burning plumes, and photolysis or oxidation may be a mechanism for the apparent increased volatility. Aqueous processing and interaction with the marine boundary layer air may be a mechanism for the presence of sodium on many aged potassium salts. By number, biomass burning potassium salts and modified sea salts are the most observed particles on filter samples. The most commonly observed BC coatings are inorganic salts. These results suggest that atmospheric processes such as photolysis, oxidation and cloud processing are key drivers in the elemental composition and morphology of aged BBA. Fresh BBA inorganic salt content, as it has an important role in the particles' ability to uptake water, may be a key driver in how aqueous processing and atmospheric aging proceed.</p

    CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: Seasonal and diel variations and impact of anthropogenic emissions

    Get PDF
    During the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, size-resolved cloud condensation nuclei (CCN) spectra were characterized at a research site (T3) 60 km downwind of the city of Manaus, Brazil, in central Amazonia for 1 year (12 March 2014 to 3 March 2015). Particle hygroscopicity (κCCN) and mixing state were derived from the size-resolved CCN spectra, and the hygroscopicity of the organic component of the aerosol (κorg) was then calculated from κCCN and concurrent chemical composition measurements. The annual average κCCN increased from 0.13 at 75 nm to 0.17 at 171 nm, and the increase was largely due to an increase in sulfate volume fraction. During both wet and dry seasons, κCCN, κorg, and particle composition under background conditions exhibited essentially no diel variations. The constant κorg of -1/4 0. 15 is consistent with the largely uniform and high O : C value (-1/4 0. 8), indicating that the aerosols under background conditions are dominated by the aged regional aerosol particles consisting of highly oxygenated organic compounds. For air masses strongly influenced by urban pollution and/or local biomass burning, lower values of κorg and organic O : C atomic ratio were observed during night, due to accumulation of freshly emitted particles, dominated by primary organic aerosol (POA) with low hygroscopicity, within a shallow nocturnal boundary layer. The O : C, κorg, and κCCN increased from the early morning hours and peaked around noon, driven by the formation and aging of secondary organic aerosol (SOA) and dilution of POA emissions into a deeper boundary layer, while the development of the boundary layer, which leads to mixing with aged particles from the residual layer aloft, likely also contributed to the increases. The hygroscopicities associated with individual organic factors, derived from PMF (positive matrix factorization) analysis of AMS (aerosol mass spectrometry) spectra, were estimated through multivariable linear regression. For the SOA factors, the variation of the κ value with O : C agrees well with the linear relationship reported from earlier laboratory studies of SOA hygroscopicity. On the other hand, the variation in O : C of ambient aerosol organics is largely driven by the variation in the volume fractions of POA and SOA factors, which have very different O : C values. As POA factors have hygroscopicity values well below the linear relationship between SOA hygroscopicity and O : C, mixtures with different POA and SOA fractions exhibit a steeper slope for the increase in κorg with O : C, as observed during this and earlier field studies. This finding helps better understand and reconcile the differences in the relationships between κorg and O : C observed in laboratory and field studies, therefore providing a basis for improved parameterization in global models, especially in a tropical context

    Formation and evolution of tar balls from northwestern US wildfires

    No full text
    Biomass burning is a major source of light-absorbing black and brown carbonaceous particles. Tar balls (TBs) are a type of brown carbonaceous particle apparently unique to biomass burning. Here we describe the first atmospheric observations of the formation and evolution of TBs from forest fires. Aerosol particles were collected on transmission electron microscopy (TEM) grids during aircraft transects at various downwind distances from the Colockum Tarps wildland fire. TB mass fractions, derived from TEM and in situ measurements, increased from  &lt; 1&thinsp;% near the fire to 31–45&thinsp;% downwind, with little change in TB diameter. Given the observed evolution of TBs, it is recommended that these particles be labeled as processed primary particles, thereby distinguishing TB formation–evolution from secondary organic aerosols. Single-scattering albedo determined from scattering and absorption measurements increased slightly with downwind distance. Similar TEM and single-scattering albedo results were observed sampling multiple wildfires. Mie calculations are consistent with weak light absorbance by TBs (i.e., m similar to the literature values 1.56−0.02i or 1.80−0.007i) but not consistent with absorption 1 order of magnitude stronger observed in different settings. The field-derived TB mass fractions reported here indicate that this particle type should be accounted for in biomass burning emission inventories.</p

    Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol

    No full text
    Biomass burning (BB) is one of the most important contributors to atmospheric aerosols on a global scale, and wildfires are a large source of emissions that impact regional air quality and global climate. As part of the Biomass Burning Observation Project (BBOP) field campaign in summer 2013, we deployed a high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) coupled with a thermodenuder at the Mt. Bachelor Observatory (MBO, ∼  2.8 km above sea level) to characterize the impact of wildfire emissions on aerosol loading and properties in the Pacific Northwest region of the United States. MBO represents a remote background site in the western US, and it is frequently influenced by transported wildfire plumes during summer. Very clean conditions were observed at this site during periods without BB influence where the 5 min average (±1<i>σ</i>) concentration of non-refractory submicron aerosols (NR-PM<sub>1</sub>) was 3.7 ± 4.2 µg m<sup>−3</sup>. Aerosol concentration increased substantially (reaching up to 210 µg m<sup>−3</sup> of NR-PM<sub>1</sub>) for periods impacted by transported BB plumes, and aerosol composition was overwhelmingly organic. Based on positive matrix factorization (PMF) of the HR-AMS data, three types of BB organic aerosol (BBOA) were identified, including a fresh, semivolatile BBOA-1 (O ∕ C  =  0.35; 20 % of OA mass) that correlated well with ammonium nitrate; an intermediately oxidized BBOA-2 (O ∕ C  =  0.60; 17 % of OA mass); and a highly oxidized BBOA-3 (O ∕ C  =  1.06; 31 % of OA mass) that showed very low volatility with only  ∼  40 % mass loss at 200 °C. The remaining 32 % of the OA mass was attributed to a boundary layer (BL) oxygenated OA (BL-OOA; O ∕ C  =  0.69) representing OA influenced by BL dynamics and a low-volatility oxygenated OA (LV-OOA; O ∕ C  =  1.09) representing regional aerosols in the free troposphere. The mass spectrum of BBOA-3 resembled that of LV-OOA and had negligible contributions from the HR-AMS BB tracer ions – C<sub>2</sub>H<sub>4</sub>O<sub>2</sub><sup>+</sup> (<i>m</i>∕<i>z</i> = 60.021) and C<sub>3</sub>H<sub>5</sub>O<sub>2</sub><sup>+</sup> (<i>m</i>∕<i>z</i> = 73.029); nevertheless, it was unambiguously related to wildfire emissions. This finding highlights the possibility that the influence of BB emission could be underestimated in regional air masses where highly oxidized BBOA (e.g., BBOA-3) might be a significant aerosol component but where primary BBOA tracers, such as levoglucosan, are depleted. We also examined OA chemical evolution for persistent BB plume events originating from a single fire source and found that longer solar radiation led to higher mass fraction of the chemically aged BBOA-2 and BBOA-3 and more oxidized aerosol. However, an analysis of the enhancement ratios of OA relative to CO (ΔOA ∕ΔCO) showed little difference between BB plumes transported primarily at night versus during the day, despite evidence of substantial chemical transformation in OA induced by photooxidation. These results indicate negligible net OA production in photochemically aged wildfire plumes observed in this study, for which a possible reason is that SOA formation was almost entirely balanced by BBOA volatilization. Nevertheless, the formation and chemical transformation of BBOA during atmospheric transport can significantly influence downwind sites with important implications for health and climate

    Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    Get PDF
    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O&lt;sub&gt;3&lt;/sub&gt; and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (&lt;i&gt;D&lt;/i&gt;&lt;sub&gt;&lt;i&gt;p&lt;/i&gt;&lt;/sub&gt;&gt;100 nm) gives a linear relation up to a number concentration of ~150 cm&lt;sup&gt;−3&lt;/sup&gt;, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol with &lt;i&gt;D&lt;/i&gt;&lt;sub&gt;&lt;i&gt;p&lt;/i&gt;&lt;/sub&gt;&gt;100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the interstitial aerosol appears to have a background, upon which is superimposed a high frequency signal that contains the anti-correlation. The anti-correlation is a possible source of information on particle activation or evaporation
    corecore