94 research outputs found

    A review on flexible electrochemical biosensors to monitor alcohol in sweat

    Get PDF
    The continued focus on improving the quality of human life has encouraged the development of increasingly efficient, durable, and cost-effective products in healthcare. Over the last decade, there has been substantial development in the field of technical and interactive textiles that combine expertise in electronics, biology, chemistry, and physics. Most recently, the creation of textile biosensors capable of quantifying biometric data in biological fluids is being studied, to detect a specific disease or the physical condition of an individual. The ultimate goal is to provide access to medical diagnosis anytime and anywhere. Presently, alcohol is considered the most commonly used addictive substance worldwide, being one of the main causes of death in road accidents. Thus, it is important to think of solutions capable of minimizing this public health problem. Alcohol biosensors constitute an excellent tool to aid at improving road safety. Hence, this review explores concepts about alcohol biomarkers, the composition of human sweat and the correlation between alcohol and blood. Different components and requirements of a biosensor are reviewed, along with the electrochemical techniques to evaluate its performance, in addition to construction techniques of textile-based biosensors. Special attention is given to the determination of biomarkers that must be low cost and fast, so the use of biomimetic materials to recognize and detect the target analyte is turning into an attractive option to improve electrochemical behavior.Authors acknowledge the Portuguese Foundation for Science and Technology (FCT), FEDER funds by means of Portugal 2020 Competitive Factors Operational Program (POCI) and the Portuguese Government (OE) for funding the project PluriProtech—“Desenvolvimentos de soluçÔes multicamada para proteção ativa contra ameaças NBQR”, ref. POCI-01-0247-FEDER-047012. Authors also acknowledge strategic funding of UID/CTM/00264/2020 of 2C2T and by the “plurianual” 2020–2023 Project UIDB/00264/2020

    Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes

    Get PDF
    This work introduces the preparation of flexible carbon composite electrodes based on the top-down approach starting from the dip-coating of carbon nanofibers (CNFs) onto a cotton fabric. On these so-obtained conductive cotton fabrics, further layers of activated carbon and manganese oxide (MnO2) materials were subsequently added to enhance the electrochemical performances of negative and positive electrodes. At the end, two different types of asymmetric supercapacitors (SCs) were assembled with those textile electrodes by using porous paper and Nafion-Na ion-exchange membranes as separators. The different SCs were electrochemically characterized by means of cyclic voltammetry (CV), galvanostatic charge/discharge (G–CD) and electrochemical impedance spectroscopy (EIS). These hybrid carbon-based textile SCs exhibited capacitance performance of 138 and 134 F g–1 with the porous paper and Nafion membrane, respectively, and low self-discharge rates. Furthermore, in this study is considered the combination of two methods (cycling and floating) for studying the long-term durability tests of SCs. In particular, the floating methodology utilizes much more harsh conditions than the common cycling based on G-CD tests at high currents usually discussed in literature. The solid-state (Nafion membrane) hybrid device demonstrated very long durability with 10 K cycles and additional 270 h at a constant voltage of 1.6 V. In summary, the hybrid SCs fabricated with low cost materials and simple methodologies reported in this study showed very promising results for flexible energy storage applications.This work was partly financed by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT – Foundation for Science and Technology (project POCI-01-0145-FEDER-007136). A.J. Paleo acknowledges the European COST Action CA15107- Multi-Functional Nano-Carbon Composite Materials Network (MultiComp) for its support with a Short Term Scientific Mission (STSM) grant at CNR-ITAE of Messina

    Electronic features of cotton fabric e-textiles prepared with aqueous carbon nanofiber inks

    Get PDF
    Cotton woven fabrics functionalized with aqueous inks made with carbon nanofibers (CNFs) and anionic surfactant are prepared via dip-coating followed by heat treatment, and their electronic properties are discussed. The e-textiles prepared with the inks made with the highest amount of CNFs (6.4 mg mL−1 ) show electrical conductivities (σ) of ∌35 S m−1 and a negative Seebeck (S) of −6 ÎŒV K−1 at 30 °C, which means that their majority carriers are electrons. The σ(T) of the e-textiles from 30 to 100 °C shows a negative temperature effect, interpreted as a thermally activated hopping mechanism across a random network of potential wells by means of the 3D variable range hopping (VRH) model. Likewise, their S(T) from 30 to 100 °C shows a negative temperature effect, conveniently depicted by the same model proposed for describing the negative Seebeck of doped multiwall carbon nanotube mats. From this model, it is deduced that the cause of the negative Seebeck in the e-textiles may arise from the contribution of the impurities found in the as-received CNFs, which cause sharply varying and localized states at approximately 0.085 eV above their Fermi energy level (EF). Moreover, the possibility of a slight n-doping from the cellulose fibers of the fabrics and the residuals of the anionic surfactant onto the most external CNF graphitic shells present in the e-textiles is also discussed with the help of the σ(T) and S(T) analysis.This research was funded by the project UID/CTM/00264/2021 of 2C2T under the COMPETE and FCT/MCTES (PIDDAC) cofinanced by FEDER through the PT2020 program. E.M. acknowledges financial support from ANID Anillo ACT/192023 and Fondecyt No 1190361

    Thermoelectric properties of n-type poly (ether ether ketone)/carbon nanofiber melt-processed composites

    Get PDF
    The thermoelectric properties, at temperatures from 30 °C to 100 °C, of melt-processed poly(ether ether ketone) (PEEK) composites prepared with 10 wt.% of carbon nanofibers (CNFs) are discussed in this work. At 30 °C, the PEEK/CNF composites show an electrical conductivity (σ) of ~27 S m−1 and a Seebeck coefficient (S) of −3.4 ÎŒV K−1, which means that their majority charge carriers are electrons. The origin of this negative Seebeck is deduced because of the impurities present in the as-received CNFs, which may cause sharply varying and localized states at approximately 0.086 eV above the Fermi energy level (EF) of CNFs. Moreover, the lower S, in absolute value, found in PEEK/CNF composites, when compared with the S of as-received CNFs (−5.3 ÎŒV K−1), is attributed to a slight electron withdrawing from the external layers of CNFs by the PEEK matrix. At temperatures from 30 °C to 100 °C, the σ (T) of PEEK/CNF composites, in contrast to the σ (T) of as-received CNFs, shows a negative temperature effect, understood through the 3D variable-range hopping (VRH) model, as a thermally activated hopping mechanism across a random network of potential wells. Moreover, their nonlinear S (T) follows the same behavior reported before for polypropylene composites melt-processed with similar CNFs at the same interval of temperatures.A. J. Paleo gratefully acknowledges support from FCT-Foundation for Science and Technology by the project UID/CTM/00264/2021 of 2C2T under the COMPETE and FCT/MCTES (PIDDAC) cofinanced by FEDER through the PT2020 program and “plurianual” 2020–2023 Project UIDB/00264/2020. E. Muñoz acknowledges financial support from ANID Anillo ACT/192023 and Fondecyt No 1190361. M. Melle-Franco acknowledges support from the project IF/00894/2015 and within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC)

    Thermoelectric properties of polypropylene carbon nanofiber melt-mixed composites: exploring the role of polymer on their Seebeck coefficient

    Get PDF
    The effect of polypropylene (PP) on the Seebeck coefficient (S) of carbon nanofibers (CNFs) in melt-extruded PP composites filled with up to 5 wt. % of CNFs was analyzed in this study. The as-received CNFs present an electrical conductivity of ~320 S m−1 and an interesting phenomenon of showing negative S-values of −5.5 ΌVK−1, with 10−2 ”W/mK2 as the power factor (PF). In contrast, the PP/CNF composites with 5 wt. % of CNFs showed lower conductivities of ~50 S m−1, less negative S-values of −3.8 ΌVK−1, and a PF of 7 × 10−4 ”W/mK2. In particular, the change in the Seebeck coefficient of the PP/CNF composites is explained by a slight electron donation from the outer layers of the CNFs to the PP molecules, which could reduce the S-values of the as-received CNFs. Our study indicates that even insulating polymers such as PP may have a quantifiable effect on the intrinsic Seebeck coefficient of carbon-based nanostructures, and this fact should also be taken into consideration to tailor conductive polymer composites with the desired thermoelectric (TE) properties.The authors affiliated with 2C2T acknowledge support from FCT-Foundation for Science and Technology within the scope of project UID/CTM/00264/2020. In addition, support through project IF/ A. J. Paleo et al. 00894/2015 and within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 and UIDP/50011/2020 and access to the Navigator platform (LCA-UC) through the Advanced Computing Project CPCA/A2/2524/2020, financed by national funds through the Portuguese Foundation for Science and Technology I.P./ MCTES, is gratefully acknowledged

    Degradation of the dielectric and piezoelectric response of b-poly(vinylidene fluoride) after temperature annealing

    Get PDF
    The effect of annealing temperature and time on the dielectric and piezoelectric response of poly(vinylidene fluoride), PVDF, has been studied. The observed decrease in the value of the dielectric, έ, and piezoelectric, d33, constants is related to depoling of the material and not to variations of the degree of crystallinity or the electroactive ÎČ-phase content. In a general way, the dielectric and piezoelectric responses decrease strongly in the first four hours at a given temperature, in particular for temperatures higher that 80 ÂșC, reaching stable values for longer annealing times. For most applications, the temperature of 100 ÂșC will set the limit of suitable performance. Nevertheless, the material still retains stable piezoelectric response of ~ 4 pC/N after reaching temperatures of 140 ÂșC. The mechanisms behind the observed behavior have been discussedFundação para a CiĂȘncia e a Tecnologia (FCT) - bolsa PTDC/CTM/73030/2006, NANO/NMed-SD/0156/2007, bolsa SFRH/BPD/63148/200

    Constraining Unmodeled Physics with Compact Binary Mergers from GWTC-1

    Get PDF
    We present a flexible model to describe the effects of generic deviations of observed gravitational wave signals from modeled waveforms in the LIGO and Virgo gravitational wave detectors. With the detection of 11 gravitational wave events from the GWTC-1 catalog, we are able to constrain possible deviations from our modeled waveforms. In this paper we present our coherent spline model that describes the deviations, then choose to validate our model on an example phenomenological and astrophysically motivated departure in waveforms based on extreme spontaneous scalarization. We find that the model is capable of recovering the simulated deviations. By performing model comparisons we observe that the spline model effectively describes the simulated departures better than a normal compact binary coalescence (CBC) model. We analyze the entire GWTC-1 catalog of events with our model and compare it to a normal CBC model, finding that there are no significant departures from the modeled template gravitational waveforms used

    Negative thermoelectric power of melt mixed vapor grown carbon nanofiber polypropylene composites

    Get PDF
    Manuscript DraftIn this work, commercial vapor grown carbon nanofibers (CNF), produced by chemical vapor deposition (CVD), were melt extruded with polypropylene (PP) with the aim of analyzing their thermoelectric properties (i.e., electrical conductivity, thermoelectric power, power factor and figure of merit). Unexpectedly, all PP/CNF composites showed negative thermoelectric power (TEP) values instead of showing the typical positive TEP observed for this type of carbon-based polymer composites. These results can be attributed to the double layer structure surrounding the tubular core of the carbon nanofiber grown by the CVD method at 1100 °C, which may lead the intrinsically negative TEP contribution from the larger inner layer to counteract the positive TEP contribution from the smaller outer layer due to common oxygen doping. Overall, all composites showed negative TEP values around −8.5 ÎŒVK−1 and a maximum power factor of 1.75 × 10-3â€ŻÎŒW m-1 K−2, corresponding to a figure of merit of 1.2 × 10-6 at room temperature. This study demonstrates that melt mixed polymer composites with large-diameter tubular carbon nanostructures and negative Seebeck coefficients can be directly produced with large-scale processing methods without requiring specific additives and/or deoxygenation treatments.POCI-01-0145-FEDER-007136, POCI-01-0145- FEDER-006941, POCI-01-0145-FEDER-016723, UID/CTM/00264/2019. FEDER funds through the Competitivity Factors Operational Programme - COMPETE 2020 and by national funds through FCT – Foundation for Science and Technology (project POCI-01-0145-FEDER-007136, POCI01-0145-FEDER-006941 and POCI-01-0145-FEDER-016723 and Strategic Funding UID/FIS/04650/2013 and UID/EEA/04436/2013). E. M. F. Vieira is grateful for financial support through the FCT grant SFRH/BPD/95905/201

    The impact of music festival attendance on young people's psychological and social well being

    Get PDF
    Although the social, emotional, physical and cognitive benefits of engagement in music are well known, little research has been conducted on the psychological benefits of music in the context of music festivals. This article draws on theoretical constructs from the field of positive psychology to interpret the impact of music festival attendance on participants' psychological and social well-being. Qualitative and quantitative data were collected from a focus group and questionnaire survey with young festival-goers aged 18-29 years. Four facets of the music festival experience were identified that were associated with well-being outcomes. These are explored and discussed with reference both to participants' focus group comments and statistical analysis of questionnaire responses. A conceptual model is presented in order to guide further research in this area, and enable both festival organizers and attendees to take optimal advantage of the potential of music festivals to impact positively on young adults' psychological and social well-being

    Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene–butadiene–styrene/multiwall carbon nanotubes composites

    Get PDF
    Composites of styrene-butadiene-styrene (SBS) block copolymer with multiwall carbon nanotubes (MWCNT) were processed by solution casting in order to investigate the influence of filler content, the different ratio of styrene/butadiene in the copolymer and the architecture of the SBS matrix on the electrical, mechanical and electro-mechanical properties of the composites. It was found that filler content and elastomer matrix architecture influence the percolation threshold and consequently the overall composite electrical conductivity. The mechanical properties are mainly affected by the styrene and filler content. Hopping between nearest fillers is proposed as the main mechanism for the composite conduction. The variation of the electrical resistivity is linear with the deformation. This fact, together with the gauge factor values in the range of 2 to 18, results in appropriate composites to be used as (large) deformation sensors.This work was funded by FEDER funds through the "Programa Operacional Factores de Competitividade – COMPETE" and by national funds by FCT - Fundação para a CiĂȘncia e a Tecnologia, through project references PTDC/CTM/69316/2006, PTDC/CTM/73465/2006, PTDC/CTM-NAN/112574/2009, and NANO/NMed- SD/0156/2007. PC, JS and VS also thank FCT for the SFRH/BD/64267/2009, SFRH/BD/60623/2009 and SFRH/BPD/63148/2009 grants, respectively. The authors also thank support from the COST Action MP1003 ”European Scientific Network for Artificial Muscles” and the COST action MP0902 “Composites of Inorganic Nanotubes and Polymers (COINAPO)
    • 

    corecore