29 research outputs found
Kinematics and hydrodynamics of spinning particles
In the first part (Sections 1 and 2) of this paper --starting from the Pauli
current, in the ordinary tensorial language-- we obtain the decomposition of
the non-relativistic field velocity into two orthogonal parts: (i) the
"classical part, that is, the 3-velocity w = p/m OF the center-of-mass (CM),
and (ii) the so-called "quantum" part, that is, the 3-velocity V of the motion
IN the CM frame (namely, the internal "spin motion" or zitterbewegung). By
inserting such a complete, composite expression of the velocity into the
kinetic energy term of the non-relativistic classical (i.e., newtonian)
lagrangian, we straightforwardly get the appearance of the so-called "quantum
potential" associated, as it is known, with the Madelung fluid. This result
carries further evidence that the quantum behaviour of micro-systems can be
adirect consequence of the fundamental existence of spin. In the second part
(Sections 3 and 4), we fix our attention on the total 3-velocity v = w + V, it
being now necessary to pass to relativistic (classical) physics; and we show
that the proper time entering the definition of the four-velocity v^mu for
spinning particles has to be the proper time tau of the CM frame. Inserting the
correct Lorentz factor into the definition of v^mu leads to completely new
kinematical properties for v_mu v^mu. The important constraint p_mu v^mu = m,
identically true for scalar particles, but just assumed a priori in all
previous spinning particle theories, is herein derived in a self-consistent
way.Comment: LaTeX file; needs kapproc.st
On Locality in Quantum General Relativity and Quantum Gravity
The physical concept of locality is first analyzed in the special
relativistic quantum regime, and compared with that of microcausality and the
local commutativity of quantum fields. Its extrapolation to quantum general
relativity on quantum bundles over curved spacetime is then described. It is
shown that the resulting formulation of quantum-geometric locality based on the
concept of local quantum frame incorporating a fundamental length embodies the
key geometric and topological aspects of this concept. Taken in conjunction
with the strong equivalence principle and the path-integral formulation of
quantum propagation, quantum-geometric locality leads in a natural manner to
the formulation of quantum-geometric propagation in curved spacetime. Its
extrapolation to geometric quantum gravity formulated over quantum spacetime is
described and analyzed.Comment: Mac-Word file translated to postscript for submission. The author may
be reached at: [email protected] To appear in Found. Phys. vol. 27,
199