2,759 research outputs found

    Морфологические изменения в нижнеальвеолярном нерве на экспериментальной модели его травмы разной степени тяжести

    Get PDF
    У роботі на 40 лабораторних щурах досліджено закономірності та патоморфологічні зміни у нижньоальвеолярному нерві й параневральных тканинах у різний термін після операції, що викликані різним ступенем дії травмуючого фактору.During the experiments on 40 laboratory rodents we have studied the regularities and pathomorphological changes in lower dental nerve and paraneural tissues induced by disturbing factor of varying influence intensity observed at different postoperative periods

    Closed-Loop Multitarget Optimization for Discovery of New Emulsion Polymerization Recipes

    Get PDF
    Self-optimization of chemical reactions enables faster optimization of reaction conditions or discovery of molecules with required target properties. The technology of self-optimization has been expanded to discovery of new process recipes for manufacture of complex functional products. A new machine-learning algorithm, specifically designed for multiobjective target optimization with an explicit aim to minimize the number of “expensive” experiments, guides the discovery process. This “black-box” approach assumes no a priori knowledge of chemical system and hence particularly suited to rapid development of processes to manufacture specialist low-volume, high-value products. The approach was demonstrated in discovery of process recipes for a semibatch emulsion copolymerization, targeting a specific particle size and full conversion.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (EC FP7) Grant Agreement no. [NMP2-SL-2012-280827] and EPSRC project “Closed Loop Optimization for Sustainable Chemical Manufacture” [EP/L003309/1]

    The Role of Chromatin Modifications in the Evolution of Giant Plant Genomes.

    Get PDF
    Angiosperm genome sizes (GS) range ~2400-fold and comprise genes and their regulatory regions, repeats, semi-degraded repeats, and 'dark matter'. The latter represents repeats so degraded that they can no longer be recognised as repetitive. In exploring whether the histone modifications associated with chromatin packaging of these contrasting genomic components are conserved across the diversity of GS in angiosperms, we compared immunocytochemistry data for two species whose GS differ ~286-fold. We compared published data for Arabidopsis thaliana with a small genome (GS = 157 Mbp/1C) with newly generated data from Fritillaria imperialis, which has a giant genome (GS = 45,000 Mbp/1C). We compared the distributions of the following histone marks: H3K4me1, H3K4me2, H3K9me1, H3K9me2, H3K9me3, H3K27me1, H3K27me2, and H3K27me3. Assuming these histone marks are associated with the same genomic features across all species, irrespective of GS, our comparative analysis enables us to suggest that while H3K4me1 and H3K4me2 methylation identifies genic DNA, H3K9me3 and H3K27me3 marks are associated with 'dark matter', H3K9me1 and H3K27me1 mark highly homogeneous repeats, and H3K9me2 and H3K27me2 mark semi-degraded repeats. The results have implications for our understanding of epigenetic profiles, chromatin packaging and the divergence of genomes, and highlight contrasting organizations of the chromatin within the nucleus depending on GS itself
    corecore