216 research outputs found

    Detailed Phase Transition Study at M_H <= 70 GeV in a 3-dimensional SU(2)SU(2)--Higgs Model

    Full text link
    We study the electroweak phase transition in an effective 3-dimensional theory for a Higgs mass of about 70 GeV by Monte Carlo simulations. The transition temperature and jumps of order parameters are obtained and extrapolated to the continuum using multi-histogram techniques and finite size analysis.Comment: Talk presented at LATTICE96(electroweak), 4 pages, 5 figure

    Physics of the Electroweak Phase Transition at M_H <= 70 GeV in a 3-dimensional SU(2)-Higgs Model

    Full text link
    Physical parameters of the electroweak phase transition in a 3d effective lattice SU(2)-Higgs model are presented. The phase transition temperatures, latent heats and continuum condensate discontinuities are measured at Higgs masses of about 70 and 35 GeV. Masses and Higgs condensates are compared to perturbation theory in the broken phase. In the symmetric phase bound states and the static force are determined.Comment: Talk presented at LATTICE96(electroweak), 4 pages, 5 figure

    3-D lattice simulation of the electroweak phase transition at small Higgs mass

    Get PDF
    We study the electroweak phase transition by lattice simulations of an effective 3-dimensional theory, for a Higgs mass of about 35GeV35 GeV. In the broken symmetry phase our results on masses and the Higgs condensate are consistent with 2-loop perturbative results. However, we find a non-perturbative lowering of the transition temperature, similar to the one previously found at mH=80GeVm_H = 80 GeV. For the symmetric phase, bound state masses and the static force are determined and compared with results for pure SU(2)SU(2) theory.Comment: 11 pages, uuencoded ps-file, 5 postscript figures include

    33--Dimensional Approach to Hot Electroweak Matter for MHiggs70M_{Higgs} \leq 70 GeV

    Full text link
    We study the electroweak phase transition by lattice simulations of an effective 3-dimensional theory, for a Higgs mass of about 7070 GeV. Exploiting a variant of the equal weight criterion of phase equilibrium, we obtain transition temperature, latent heat and surface tension and compare with MH35M_H \approx 35 GeV. For the symmetric phase, bound state masses and the static force are determined and compared with results for pure SU(2)SU(2) theory.Comment: 6 pages with 4 figures, latex,postscript figures and uuencode

    Phase transitions in two dimensions - the case of Sn adsorbed on Ge(111) surfaces

    Full text link
    Accurate atomic coordinates of the room-temperature (root3xroot3)R30degree and low-temperature (3x3) phases of 1/3 ML Sn on Ge(111) have been established by grazing-incidence x-ray diffraction with synchrotron radiation. The Sn atoms are located solely at T4-sites in the (root3xroot3)R30degree structure. In the low temperature phase one of the three Sn atoms per (3x3) unit cell is displaced outwards by 0.26 +/- 0.04 A relative to the other two. This displacement is accompanied by an increase in the first to second double-layer spacing in the Ge substrate.Comment: RevTeX, 5 pages including 2 figure

    Determination of the (3x3)-Sn/Ge(111) structure by photoelectron diffraction

    Full text link
    At a coverage of about 1/3 monolayer, Sn deposited on Ge(111) below 550 forms a metastable (sqrt3 x sqrt3)R30 phase. This phase continuously and reversibly transforms into a (3x3) one, upon cooling below 200 K. The photoemission spectra of the Sn 4d electrons from the (3x3)-Sn/Ge(111) surface present two components which are attributed to inequivalent Sn atoms in T4 bonding sites. This structure has been explored by photoelectron diffraction experiments performed at the ALOISA beamline of the Elettra storage ring in Trieste (Italy). The modulation of the intensities of the two Sn components, caused by the backscattering of the underneath Ge atoms, has been measured as a function of the emission angle at fixed kinetic energies and viceversa. The bond angle between Sn and its nearest neighbour atoms in the first Ge layer (Sn-Ge1) has been measured by taking polar scans along the main symmetry directions and it was found almost equivalent for the two components. The corresponding bond lengths are also quite similar, as obtained by studying the dependence on the photoelectron kinetic energy, while keeping the photon polarization and the collection direction parallel to the Sn-Ge1 bond orientation (bond emission). A clear difference between the two bonding sites is observed when studying the energy dependence at normal emission, where the sensitivity to the Sn height above the Ge atom in the second layer is enhanced. This vertical distance is found to be 0.3 Angstroms larger for one Sn atom out of the three contained in the lattice unit cell. The (3x3)-Sn/Ge(111) is thus characterized by a structure where the Sn atom and its three nearest neighbour Ge atoms form a rather rigid unit that presents a strong vertical distortion with respect to the underneath atom of the second Ge layer.Comment: 10 pages with 9 figures, added reference

    Surface Phase Transitions Induced by Electron Mediated Adatom-Adatom Interaction

    Full text link
    We propose that the indirect adatom-adatom interaction mediated by the conduction electrons of a metallic surface is responsible for the 3×33×3\sqrt{3}\times \sqrt{3}\Leftrightarrow 3\times 3 structural phase transitions observed in Sn/Ge (111) and Pb/Ge (111). When the indirect interaction overwhelms the local stress field imposed by the substrate registry, the system suffers a phonon instability, resulting in a structural phase transition in the adlayer. Our theory is capable of explaining all the salient features of the 3×33×3\sqrt{3}\times \sqrt{3}\Leftrightarrow 3\times 3 transitions observed in Sn/Ge (111) and Pb/Ge (111), and is in principle applicable to a wide class of systems whose surfaces are metallic before the transition.Comment: 4 pages, 5 figure

    The Growth of Bubbles in Cosmological Phase Transitions

    Full text link
    We study how bubbles grow after the initial nucleation event in generic first-order cosmological phase transitions characterised by the values of latent heat, interface tension and correlation length, and driven by a scalar order parameter ϕ\phi. Equations coupling ϕ\phi and the fluid variables vv and TT and depending on a dissipative constant Γ\Gamma are derived and solved numerically in the 1+1 dimensional case starting from a slightly deformed critical bubble configuration. Parameters corresponding to QCD and electroweak phase transitions are chosen and the whole history of the bubble with formation of combustion and shock fronts is computed as a function of Γ\Gamma. Both deflagrations and detonations can appear depending on the values of the parameters. Reheating due to collisions of bubbles is also computed.Comment: 24 LaTeX-pages with 20 figures not included. The complete PostScript file, including figures, is available by anonymous ftp from fltxc.helsinki.fi, as /pub/bubble.ps, or as a hardcopy by airmail (a dublicate lies at nic.funet.fi:/pub/sci/physics/papers/bubble.ps). Helsinki Preprint HU-TFT-93-4

    Inhomogeneous Field Configurations and the Electroweak Phase Transition

    Full text link
    We investigate the effects of inhomogeneous scalar field configurations on the electroweak phase transition. For this purpose we calculate the leading perturbative correction to the wave function correction term Z(\vph,T), i.e., the kinetic term in the effective action, for the electroweak Standard Model at finite temperature and the top quark self--mass. Our finding for the fermionic contribution to Z(\vph,T) is infra--red finite and disagrees with other recent results. In general, neither the order of the phase transition nor the temperature at which it occurs change, once Z(\vph,T) is included. But a non--vanishing, positive (negative) Z(\vph,T) enhances (decreases) the critical droplet surface tension and the strength of the phase transition. We find that in the range of parameter space, which allows for a first--order phase transition, the wave function correction term is negative --- indicating a weaker phase transition --- and especially for small field values so large that perturbation theory becomes unreliable.Comment: 23 pages of LaTeX + 3 PostScript figures included in uuencoded form, FERMI-PUB-93/253-

    Maximal variance reduction for stochastic propagators with applications to the static quark spectrum

    Get PDF
    We study a new method -- maximal variance reduction -- for reducing the variance of stochastic estimators for quark propagators. We find that while this method is comparable to usual iterative inversion for light-light mesons, a considerable improvement is achieved for systems containing at least one infinitely heavy quark. Such systems are needed for heavy quark effective theory. As an illustration of the effectiveness of the method we present results for the masses of the ground state and excited states of Qˉq\bar{Q}q mesons and Qˉqq\bar{Q}qq baryons. We compare these results with the experimental spectra involving bb quarks.Comment: 31 pages with 7 postscript file
    corecore