249 research outputs found

    Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces

    Full text link
    The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength spaced optical antennas. The lenses and axicons consist of radial distributions of V-shaped nanoantennas that generate respectively spherical wavefronts and non-diffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high numerical aperture lenses such as flat microscope objectives

    Associations of a metal mixture measured in multiple biomarkers with IQ: Evidence from italian adolescents living near ferroalloy industry

    Get PDF
    BACKGROUND: Research on the health effects of chemical mixtures has focused mainly on early life rather than adolescence, a potentially important developmental life stage. OBJECTIVES: We examined associations of a metal mixture with general cognition in a cross-sectional study of adolescents residing near ferromanga-nese industry, a source of airborne metals emissions. METHODS: We measured manganese (Mn), lead (Pb), copper (Cu), and chromium (Cr) in hair, blood, urine, nails, and saliva from 635 Italian adolescents 10–14 years of age. Full-scale, verbal, and performance intelligence quotient (FSIQ, VIQ, PIQ) scores were assessed using the Wechsler Intelligence Scale for Children-III. Multivariable linear regression and Bayesian kernel machine regression (BKMR) were used to estimate associations of the metal mixture with IQ. In secondary analyses, we used BKMR’s hierarchical variable selection option to inform biomarker selection for Mn, Cu, and Cr. RESULTS: Median metal concentrations were as follows: hair Mn, 0:08 lg=g; hair Cu, 9:6 lg=g; hair Cr, 0:05 lg=g; and blood Pb, 1:3 lg=dL. Adjusted models revealed an inverted U-shaped association between hair Cu and VIQ, consistent with Cu as an essential nutrient that is neurotoxic in excess. At low levels of hair Cu (10th percentile, 5:4 lg=g), higher concentrations (90th percentiles) of the mixture of Mn, Pb, and Cr (0:3 lg=g, 2:6 lg=dL, and 0:1 lg=g, respectively) were associated with a 2.9 (95% CI: −5:2, −0:5)–point decrease in VIQ score, compared with median concentrations of the mixture. There was suggestive evidence of interaction between Mn and Cu. In secondary analyses, saliva Mn, hair Cu, and saliva Cr were selected as the biomarkers most strongly associated with VIQ score. DISCUSSION: Higher adolescent levels of Mn, Pb, and Cr were associated with lower IQ scores, especially at low Cu levels. Findings also support fur-ther investigation into Cu as both beneficial and toxic for neurobehavioral outcomes

    Functional polymorphisms of the brain serotonin synthesizing enzyme tryptophan hydroxylase-2

    Get PDF
    Many neuropsychiatric disorders are considered to be related to the dysregulation of brain serotonergic neurotransmission. Tryptophan hydroxylase-2 (TPH2) is the neuronal-specific enzyme that controls brain serotonin synthesis. There is growing genetic evidence for the possible involvement of TPH2 in serotonin-related neuropsychiatric disorders; however, the degree of genetic variation in TPH2 and, in particular, its possible functional consequences remain unknown. In this short review, we will summarize some recent findings with respect to the functional analysis of TPH2

    Baseline representativeness of patients in clinics enrolled in the PRimary care Opioid Use Disorders treatment (PROUD) trial: comparison of trial and non-trial clinics in the same health systems

    Get PDF
    BACKGROUND: Pragmatic primary care trials aim to test interventions in real world health care settings, but clinics willing and able to participate in trials may not be representative of typical clinics. This analysis compared patients in participating and non-participating clinics from the same health systems at baseline in the PRimary care Opioid Use Disorders treatment (PROUD) trial. METHODS: This observational analysis relied on secondary electronic health record and administrative claims data in 5 of 6 health systems in the PROUD trial. The sample included patients 16-90 years at an eligible primary care visit in the 3 years before randomization. Each system contributed 2 randomized PROUD trial clinics and 4 similarly sized non-trial clinics. We summarized patient characteristics in trial and non-trial clinics in the 2 years before randomization ( baseline ). Using mixed-effect regression models, we compared trial and non-trial clinics on a baseline measure of the primary trial outcome (clinic-level patient-years of opioid use disorder (OUD) treatment, scaled per 10,000 primary care patients seen) and a baseline measure of the secondary trial outcome (patient-level days of acute care utilization among patients with OUD). RESULTS: Patients were generally similar between the 10 trial clinics (n = 248,436) and 20 non-trial clinics (n = 341,130), although trial clinics\u27 patients were slightly younger, more likely to be Hispanic/Latinx, less likely to be white, more likely to have Medicaid/subsidized insurance, and lived in less wealthy neighborhoods. Baseline outcomes did not differ between trial and non-trial clinics: trial clinics had 1.0 more patient-year of OUD treatment per 10,000 patients (95% CI: - 2.9, 5.0) and a 4% higher rate of days of acute care utilization than non-trial clinics (rate ratio: 1.04; 95% CI: 0.76, 1.42). CONCLUSIONS: trial clinics and non-trial clinics were similar regarding most measured patient characteristics, and no differences were observed in baseline measures of trial primary and secondary outcomes. These findings suggest trial clinics were representative of comparably sized clinics within the same health systems. Although results do not reflect generalizability more broadly, this study illustrates an approach to assess representativeness of clinics in future pragmatic primary care trials

    Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: A quantitative and molecular genetic investigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A twin study design was used to assess the degree to which additive genetic variance influences ADHD symptom scores across two ages during infancy. A further objective in the study was to observe whether genetic association with a number of candidate markers reflects results from the quantitative genetic analysis.</p> <p>Method</p> <p>We have studied 312 twin pairs at two time-points, age 2 and age 3. A composite measure of ADHD symptoms from two parent-rating scales: The Child Behavior Checklist/1.5 - 5 years (CBCL) hyperactivity scale and the Revised Rutter Parent Scale for Preschool Children (RRPSPC) was used for both quantitative and molecular genetic analyses.</p> <p>Results</p> <p>At ages 2 and 3 ADHD symptoms are highly heritable (<it>h</it><sup><it>2 </it></sup><it>= </it>0.79 and 0.78, respectively) with a high level of genetic stability across these ages. However, we also observe a significant level of genetic change from age 2 to age 3. There are modest influences of non-shared environment at each age independently (<it>e</it><sup><it>2 </it></sup>= 0.22 and 0.21, respectively), with these influences being largely age-specific. In addition, we find modest association signals in <it>DAT1 </it>and <it>NET1 </it>at both ages, along with suggestive specific effects of <it>5-HTT </it>and <it>DRD4 </it>at age 3.</p> <p>Conclusions</p> <p>ADHD symptoms are heritable at ages 2 and 3. Additive genetic variance is largely shared across these ages, although there are significant new effects emerging at age 3. Results from our genetic association analysis reflect these levels of stability and change and, more generally, suggest a requirement for consideration of age-specific genotypic effects in future molecular studies.</p

    PRimary Care Opioid Use Disorders treatment (PROUD) trial protocol: a pragmatic, cluster-randomized implementation trial in primary care for opioid use disorder treatment

    Get PDF
    BACKGROUND: Most people with opioid use disorder (OUD) never receive treatment. Medication treatment of OUD in primary care is recommended as an approach to increase access to care. The PRimary Care Opioid Use Disorders treatment (PROUD) trial tests whether implementation of a collaborative care model (Massachusetts Model) using a nurse care manager (NCM) to support medication treatment of OUD in primary care increases OUD treatment and improves outcomes. Specifically, it tests whether implementation of collaborative care, compared to usual primary care, increases the number of days of medication for OUD (implementation objective) and reduces acute health care utilization (effectiveness objective). The protocol for the PROUD trial is presented here. METHODS: PROUD is a hybrid type III cluster-randomized implementation trial in six health care systems. The intervention consists of three implementation strategies: salary for a full-time NCM, training and technical assistance for the NCM, and requiring that three primary care providers have DEA waivers to prescribe buprenorphine. Within each health system, two primary care clinics are randomized: one to the intervention and one to Usual Primary Care. The sample includes all patients age 16-90 who visited the randomized primary care clinics from 3 years before to 2 years after randomization (anticipated to be \u3e 170,000). Quantitative data are derived from existing health system administrative data, electronic medical records, and/or health insurance claims ( electronic health records, [EHRs]). Anonymous staff surveys, stakeholder debriefs, and observations from site visits, trainings and technical assistance provide qualitative data to assess barriers and facilitators to implementation. The outcome for the implementation objective (primary outcome) is a clinic-level measure of the number of patient days of medication treatment of OUD over the 2 years post-randomization. The patient-level outcome for the effectiveness objective (secondary outcome) is days of acute care utilization [e.g. urgent care, emergency department (ED) and/or hospitalizations] over 2 years post-randomization among patients with documented OUD prior to randomization. DISCUSSION: The PROUD trial provides information for clinical leaders and policy makers regarding potential benefits for patients and health systems of a collaborative care model for management of OUD in primary care, tested in real-world diverse primary care settings

    An iconic language for the graphical representation of medical concepts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many medication errors are encountered in drug prescriptions, which would not occur if practitioners could remember the drug properties. They can refer to drug monographs to find these properties, however drug monographs are long and tedious to read during consultation. We propose a two-step approach for facilitating access to drug monographs. The first step, presented here, is the design of a graphical language, called VCM.</p> <p>Methods</p> <p>The VCM graphical language was designed using a small number of graphical primitives and combinatory rules. VCM was evaluated over 11 volunteer general practitioners to assess if the language is easy to learn, to understand and to use. Evaluators were asked to register their VCM training time, to indicate the meaning of VCM icons and sentences, and to answer clinical questions related to randomly generated drug monograph-like documents, supplied in text or VCM format.</p> <p>Results</p> <p>VCM can represent the various signs, diseases, physiological states, life habits, drugs and tests described in drug monographs. Grammatical rules make it possible to generate many icons by combining a small number of primitives and reusing simple icons to build more complex ones. Icons can be organized into simple sentences to express drug recommendations. Evaluation showed that VCM was learnt in 2 to 7 hours, that physicians understood 89% of the tested VCM icons, and that they answered correctly to 94% of questions using VCM (versus 88% using text, <it>p </it>= 0.003) and 1.8 times faster (<it>p </it>< 0.001).</p> <p>Conclusion</p> <p>VCM can be learnt in a few hours and appears to be easy to read. It can now be used in a second step: the design of graphical interfaces facilitating access to drug monographs. It could also be used for broader applications, including the design of interfaces for consulting other types of medical document or medical data, or, very simply, to enrich medical texts.</p
    corecore