47 research outputs found

    Distribution of \u3ci\u3eBaylisascaris procyonis\u3c/i\u3e in Raccoons (\u3ci\u3eProcyon lotor\u3c/i\u3e) in Florida, USA

    Get PDF
    Baylisascaris procyonis, or raccoon roundworm, is an intestinal nematode parasite of raccoons (Procyon lotor) that is important to public and wildlife health. Historically, the parasite was uncommon in the southeastern US; however, the range of B. procyonis has expanded to include Florida, US. From 2010 to 2016, we opportunistically sampled 1,030 raccoons statewide. The overall prevalence was 3.7% (95% confidence interval=2.5–4.8%) of sampled individuals, and infection intensity ranged from 1 to 48 (mean±standard deviation 9.9±4.0). We found raccoon roundworm in 9/56 (16%) counties sampled, and the percent positive ranged from 1.1% to 13.3% of specimens collected per county. Including previously published data, B. procyonis was detected in 11 Florida counties. We used logistic regression to estimate the contribution of raccoon demographic variables and the presence of the endoparasite Macracanthorhynchus ingens to B. procyonis detection in Florida. Following the model selection process we found housing density, M. ingens presence, and urbanicity to be predictive of raccoon roundworm presence. We also found substantial among-county variation. Raccoon sex and age were not useful predictors. Public health officials, wildlife rehabilitators, wildlife managers, and others should consider any Florida raccoon to be potentially infected with B. procyonis, particularly in areas where housing density is high

    Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC.</p> <p>Results</p> <p>We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides.</p> <p>Conclusions</p> <p>The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at <url>http://bordnerlab.org/RTA/</url>.</p

    TCR cross-reactivity and allorecognition: new insights into the immunogenetics of allorecognition

    Get PDF
    Alloreactive T cells are core mediators of graft rejection and are a potent barrier to transplantation tolerance. It was previously unclear how T cells educated in the recipient thymus could recognize allogeneic HLA molecules. Recently it was shown that both naïve and memory CD4+ and CD8+ T cells are frequently cross-reactive against allogeneic HLA molecules and that this allorecognition exhibits exquisite peptide and HLA specificity and is dependent on both public and private specificities of the T cell receptor. In this review we highlight new insights gained into the immunogenetics of allorecognition, with particular emphasis on how viral infection and vaccination may specifically activate allo-HLA reactive T cells. We also briefly discuss the potential for virus-specific T cell infusions to produce GvHD. The progress made in understanding the molecular basis of allograft rejection will hopefully be translated into improved allograft function and/or survival, and eventually tolerance induction

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    Surrogate antibodies

    No full text

    Solution mapping of T cell receptor docking footprints on peptide-MHC

    No full text
    T cell receptor (TCR) recognition of peptide-MHC (pMHC) is central to the cellular immune response. A large database of TCR–pMHC structures is needed to reveal general structural principles, such as whether the repertoire of TCR/MHC docking modes is dictated by a “recognition code” between conserved elements of the TCR and MHC genes. Although ≈17 cocrystal structures of unique TCR–pMHC complexes have been determined, cocrystallization of soluble TCR and pMHC remains a major technical obstacle in the field. Here we demonstrate a strategy, based on NMR chemical shift mapping, that permits rapid and reliable analysis of the solution footprint made by a TCR when binding onto the pMHC surface. We mapped the 2C TCR binding interaction with its allogeneic ligand H–2Ld–QL9 and identified a group of NMR-shifted residues that delineated a clear surface of the MHC that we defined as the TCR footprint. We subsequently found that the docking footprint described by NMR shifts was highly accurate compared with a recently determined high-resolution crystal structure of the same complex. The same NMR footprint analysis was done on a high-affinity mutant of the TCR. The current work serves as a foundation to explore the molecular dynamics of pMHC complexes and to rapidly determine the footprints of many Ld-specific TCRs
    corecore