7,116 research outputs found

    Numerical Study on GRB-Jet Formation in Collapsars

    Get PDF
    Two-dimensional magnetohydrodynamic simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self gravity. It is found that neutrino heating processes are not so efficient to launch a jet in this study. It is also found that a jet is launched mainly by B_\phi fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest mass energy in the jet is not so high as several hundred, we conclude that the jets seen in this study are not be a GRB jet. This result suggests that general relativistic effects, which are not included in this study, will be important to generate a GRB jet. Also, the accretion disk with magnetic fields may still play an important role to launch a GRB jet, although a simulation for much longer physical time (\sim 10-100 s) is required to confirm this effect. It is shown that considerable amount of 56Ni is synthesized in the accretion disk. Thus there will be a possibility for the accretion disk to supply sufficient amount of 56Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Moreover, it is found that the electron fraction becomes larger than 0.5 around the polar axis near the black hole by \nu_e capture at the region. Thus there will be a possibility that r-process and r/p-process nucleosynthesis occur at these regions. Finally, much neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of afterglow or gamma-rays.Comment: 54 pages with 19 postscript figures. Accepted for publication in ApJ. High resolution version is available at http://www2.yukawa.kyoto-u.ac.jp/~nagataki/collapsar.pd

    New N=1 Extended Superconformal Algebras with Two and Three Generators

    Full text link
    In this paper we consider extensions of the super Virasoro algebra by one and two super primary fields. Using a non-explicitly covariant approach we compute all SW-algebras with one generator of dimension up to 7 in addition to the super Virasoro field. In complete analogy to W-algebras with two generators most results can be classified using the representation theory of the super Virasoro algebra. Furthermore, we find that the SW(3/2, 11/2)-algebra can be realized as a subalgebra of SW(3/2, 5/2) at c = 10/7. We also construct some new SW-algebras with three generators, namely SW(3/2, 3/2, 5/2), SW(3/2, 2, 2) and SW(3/2, 2, 5/2).Comment: 30 pages (Plain TeX), BONN-HE-92-0

    The distribution of supermassive black holes in the nuclei of nearby galaxies

    Get PDF
    The growth of supermassive black holes by merging and accretion in hierarchical models of galaxy formation is studied by means of Monte Carlo simulations. A tight linear relation between masses of black holes and masses of bulges arises if if the mass accreted by supermassive black holes scales linearly with the mass forming stars and if the redshift evolution of mass accretion tracks closely that of star formation. Differences in redshift evolution between black hole accretion and star formation introduce considerable scatter in this relation. A non-linear relation between black hole accretion and star formation results in a non-linear relation between masses of remnant black holes and masses of bulges. The relation of black hole mass to bulge luminosity obseved in nearby galaxies and its scatter are reproduced reasonably well by models in which black hole accretion and star formation are linearly related but do not track each other in redshift. This suggests that a common mechanism determines the efficiency for black hole accretion and the efficiency for star formation, especially for bright bulges.Comment: 6 pages, 3 figures, submitted to MNRA

    Focused Deterrence and the Prevention of Violent Gun Injuries: Practice, Theoretical Principles, and Scientific Evidence

    Get PDF
    Focused deterrence strategies are a relatively new addition to a growing portfolio of evidence-based violent gun injury prevention practices available to policy makers and practitioners. These strategies seek to change offender behavior by understanding the underlying violence-producing dynamics and conditions that sustain recurring violent gun injury problems and by implementing a blended strategy of law enforcement, community mobilization, and social service actions. Consistent with documented public health practice, the focused deterrence approach identifies underlying risk factors and causes of recurring violent gun injury problems, develops tailored responses to these underlying conditions, and measures the impact of implemented interventions. This article reviews the practice, theoretical principles, and evaluation evidence on focused deterrence strategies. Although more rigorous randomized studies are needed, the available empirical evidence suggests that these strategies generate noteworthy gun violence reduction impacts and should be part of a broader portfolio of violence prevention strategies available to policy makers and practitioners

    Constraints on B and Higgs Physics in Minimal Low Energy Supersymmetric Models

    Full text link
    We study the implications of minimal flavor violating low energy supersymmetry scenarios for the search of new physics in the B and Higgs sectors at the Tevatron collider and the LHC. We show that the already stringent Tevatron bound on the decay rate B_s -> mu+ mu- sets strong constraints on the possibility of generating large corrections to the mass difference Delta M_s of the B_s eigenstates. We also show that the B_s -> mu+ mu- bound together with the constraint on the branching ratio of the rare decay b -> s gamma has strong implications for the search of light, non-standard Higgs bosons at hadron colliders. In doing this, we demonstrate that the former expressions derived for the analysis of the double penguin contributions in the Kaon sector need to be corrected by additional terms for a realistic analysis of these effects. We also study a specific non-minimal flavor violating scenario, where there are flavor changing gluino-squark-quark interactions, governed by the CKM matrix elements, and show that the B and Higgs physics constraints are similar to the ones in the minimal flavor violating case. Finally we show that, in scenarios like electroweak baryogenesis which have light stops and charginos, there may be enhanced effects on the B and K mixing parameters, without any significant effect on the rate of B_s -> mu+ mu-.Comment: 40 pages, 14 figures; added references and note about recent measurement

    Report of the 2005 Snowmass Top/QCD Working Group

    Get PDF
    This report discusses several topics in both top quark physics and QCD at an International Linear Collider (ILC). Issues such as measurements at the ttĖ‰t\bar{t} threshold, including both theoretical and machine requirements, and the determination of electroweak top quark couplings, are reviewed. New results concerning the potential of a 500 GeV e+eāˆ’e^+e^- collider for measuring WtbWtb couplings and the top quark Yukawa coupling are presented. The status of higher order QCD corrections to jet production cross sections, heavy quark form factors, and longitudinal gauge boson scattering, needed for percent-level studies at the ILC, are reviewed. A new study of the measurement of the hadronic structure of the photon at a Ī³Ī³\gamma\gamma collider is presented. The effects on top quark properties from several models of new physics, including composite models, Little Higgs theories, and CPT violation, are studied.Comment: 39 pages, many figs; typos fixed and refs added. Contributed to the 2005 International Linear Collider Physics and Detector Workshop and 2nd ILC Accelerator Workshop, Snowmass, Colorado, 14-27 Aug 200

    Lentiviral vector transduction of spermatozoa as a tool for the study of early development

    Get PDF
    Spermatozoa and lentiviruses are two of natureā€™s most efficient gene delivery vehicles. Both can be genetically modified and used independently for the generation of transgenic animals or gene transfer/therapy of inherited disorders. Here we show that mature spermatozoa can be directly transduced with various pseudotyped lentiviral vectors and used in in vitro fertilisation studies. Lentiviral vectors encoding Green Fluorescent Protein (GFP) were shown to be efficiently processed and expressed in sperm. When these transduced sperm were used in in vitro fertilisation studies, GFP expression was observed in arising blastocysts. This simple technique of directly transducing spermatozoa has potential to be a powerful tool for the study of early and pre-implantation development and could be used as a technique in transgenic development and vertical viral transmission studies

    Particle-In-Cell Simulations of a Nonlinear Transverse Electromagnetic Wave in a Pulsar Wind Termination Shock

    Full text link
    A 2.5-dimensional particle-in-cell code is used to investigate the propagation of a large-amplitude, superluminal, nearly transverse electromagnetic (TEM) wave in a relativistically streaming electron-positron plasma with and without a shock. In the freestreaming, unshocked case, the analytic TEM dispersion relation is verified, and the streaming is shown to stabilize the wave against parametric instabilities. In the confined, shocked case, the wave induces strong, coherent particle oscillations, heats the plasma, and modifies the shock density profile via ponderomotive effects. The wave decays over ā‰³102\gtrsim 10^2 skin depths; the decay length scale depends primarily on the ratio between the wave frequency and the effective plasma frequency, and on the wave amplitude. The results are applied to the termination shock of the Crab pulsar wind, where the decay length-scale (at least 0.05") might be comparable to the thickness of filamentary, variable substructure observed in the optical and X-ray wisps and knots.Comment: 10 pages, 4 figures. Accepted for publication in ApJ (2005

    Architecture of a Silicon Strip Beam Position Monitor

    Full text link
    A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12x10 cm2. Readout of the strips is provided through the use of VA1` ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout and temperature data from triggered events to an analysis computer over gigabit Ethernet links.Comment: Submitted to TWEPP 201
    • ā€¦
    corecore