7 research outputs found

    Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision

    Get PDF
    In this retrospective compendium, we attempt to draw a “fil rouge” along fifteen years of our research in the field of optical feedback interferometry aimed at guiding the readers to the verge of new developments in the field. The general reader will be moved at appreciating the versatility and the still largely uncovered potential of the optical feedback interferometry, for both sensing and imaging applications. By discovering the broad range of available wavelengths (0.4–120 μm), the different types of suitable semiconductor lasers (Fabry–Perot, distributed feedback, vertical-cavity, quantum-cascade), and a number of unconventional tenders in multi-axis displacement, ablation front progression, self-referenced measurements, multispectral, structured light feedback imaging and compressive sensing, the specialist also could find inspirational suggestions to expand his field of research

    Versatile Multimodality Imaging System Based on Detectorless and Scanless Optical Feedback Interferometry-A Retrospective Overview for A Prospective Vision

    Get PDF
    In this retrospective compendium, we attempt to draw a "fil rouge" along fifteen years of our research in the field of optical feedback interferometry aimed at guiding the readers to the verge of new developments in the field. The general reader will be moved at appreciating the versatility and the still largely uncovered potential of the optical feedback interferometry, for both sensing and imaging applications. By discovering the broad range of available wavelengths (0.4-120 μm), the different types of suitable semiconductor lasers (Fabry-Perot, distributed feedback, vertical-cavity, quantum-cascade), and a number of unconventional tenders in multi-axis displacement, ablation front progression, self-referenced measurements, multispectral, structured light feedback imaging and compressive sensing, the specialist also could find inspirational suggestions to expand his field of research

    Adaptive self-mixing interferometry for metrology applications

    Get PDF
    Among the laser based techniques proposed for metrology applications, classical interferometers offer the highest precision measurements. However, the cost of some of the elements involved and the number of optical components used in the setup complicates using them in several industrial applications. Apart from cost, the complexities due to optical alignment and the required quality of the environmental conditions can be quite restrictive for those systems. Within the category of optical interferometers, optical feedback interferometry (OFI), also called self-mixing interferometry (SMI) has the potential to overcome some of the complexities of classical interferometry. It is compact in size, cost effective, robust, self-aligned, and it doesn't require a large number of optical components in the experimental configuration. In OFI, a portion of the emitted laser beam re-enters to the laser cavity after backreflection from the target, causing the wavelength of the laser to change, modifying the power spectrum and consequently the emitted output power, which can be detected for measurement purposes. Thus, the laser operates simultaneously as the light source, the light detector, and as the ultra-sensitive coherent sensor for optical path changes. The present PhD pursued improving the performance of OFI-based sensors using a novel and compact optical system. A solution using an adaptive optical element in the form of a voltage programmable liquid lens was proposed for automated focus adjustments. The amount of backreflected light re-entering the laser cavity could be controlled, and the laser feedback level was adjusted to the best condition in different situations, enabling the power signal to be adjusted to the best possible conditions for measurement. Feedback control enabled the proposal of a novel solution called differential OFI, which improved the measurement resolution down to the nanometre order, even if the displacements were below half-wavelength of the laser, for first time in OFI sensors. Another relevant part of the PhD was devoted to the analysis of speckle-affected optical power signals in feedback interferometers. Speckle effect appears when the displacements of the target are large, and introduces an undesired modulation of the amplitude of the signal. After an analysis of the speckle-affected signal and the main factors contributing to it, two novel solutions were proposed for the control of speckle noise. The adaptive optical head developed previously was used in a real time setup to control the presence of speckle effect, by tracking the signal to noise ratio of the emitted power, and modifying the spot size on the target when required using a feedback loop. Besides, a sensor diversity solution was proposed to enable enhancements in signal detection in fast targets, when real time control could not be applied. Finally, two industrial applications of the technique with the presence of different levels of speckle noise have been presented. A complete measurement methodology for the control of motor shaft runout in permanent magnet electrical motors, enabling complete monitoring of the displacement of the shaft has been developed and implemented in practice. Results here are validated with those obtained using a commercial laser Doppler vibrometer, an equipment with a much higher cost. A second application in the monitoring the displacement of polymer-reinforced beams used in civil engineering under dynamic loading was also demonstrated. Results here are validated using a conventional contact probe (a Linear Vertical Differential Transducer, LVDT). Both applications show that with controlled speckle features OFI performs adequately in industrial environments as a non-contact proximity probe with resolution limited by the constraints defined by the setu

    Implementation of differential self-mixing interferometry systems for the detection of nanometric vibrations

    Get PDF
    In this Thesis, we explore Self-mixing interferometry (SMI ), a method capable of producing high resolution optical path related measurements in a simple, compact and cost-effective way. Even with a notably less complex setup than traditional interferometric methods, SMI can produce measurements with a resolution well below the micrometric scale (N'2) which is sufficient for most industrial applications. The SMI effect is produced when a small part of the laser power impacting a target is back-scattered and re-injected into the laser cavity. As a result, the phase and amplitude of the laser wave is modified generating a signature beat, which can be "easily" related to different optical path-related dynamics. The main advantage of this method in relation to other interferometric methods is the simple setup consisting mainly of a single mode laser diode (LO) equipped with a simple electronic system readout a simple optical system may be used to collimate/focus the beam allowing measurements at larger distances. Because of the small amount of reflected optical power required to allow the effect, the technique can produce high resolution measurements even with diffusive targets. While the SMI method has been largely studied in the last three decades, there are still several topics worth the development of further research. One of those topics, how to increase the resolution on displacement measurements, is one of the main topics covered in this work. Classical SMI methods allow the reconstruction of displacement measurement with a resolution of N'2. The use of special processing algorithms can push further this limit reaching values in the order of e.g. N32. In this work, we propose a method to increase even further this limit reach values better than N100.The idea discussed, differential self-mixing interferometry (OSMI) proposes the use of a reference modulation (mechanical or electrical) to be used as a reference for the measurement. Simulated results have shown that under ideal conditions, it may be possible to reach resolutions in the order of N1000. In practice, however, this limit is much smaller (N100) because of LO dynamics, and different practical limitations present in the amplification and readout electronics. Experiments and measurements are presented along the second chapter of this work to present proof of the proposed method. After exploring the basics of OSMI, possible applications for classic SMI and DSMI were pursued. The obtained results are presented in the following sections. First, a review on potential biomedical measurements using SMI is discussed. The obtained results suggest that it is possible to obtain some key values related to biomedical constants (e.g. P.PW) using a displacement SMI measurement. The method, however, may not be reliable enough especially on long time measurements. Moreover, the use of certain wavelengths must be avoided during long exposures as they may prove harmful to the soft tissue due to the requirements of a small laser spot. lt is observed that SNR may lead to difficulties during the signal processing stage which may impact the results of the reconstructed signal. Next, the DSMI method was tested in an AFM-like cantilever system. The results suggest that is possible to follow the motion of a micrometric size cantilever oscillating at low frequencies with a high resolution. Higher frequencies may be achieved by using an electronic reference modulation configuration. The proposed system was able to detect some artefacts on the motion which maybe attributed to possible deflections on the cantilever surface. Possible enhancements to the method are suggested for any researcher who wants to expand the topic.En esta Tesis, se explora la interferometría auto-mezclante, mejor conocida por su nombre en inglés Self-m ixing interferometry (SMI), un método capaz de producir mediciones relativas al cambio del camino óptico en un haz laser. La técnica está caracterizada por su tamaño compacto, bajo coste y alta resolución. Pese a su simplicidad, la resolución alcanzada por sistemas basados en SMI se encuentra por debajo de la escala micrométrica (N2), lo cual es suficiente para la mayoría de las aplicaciones industriales. El efecto SMI se genera cuando una pequeña parte de la potencia óptica del láser es retro reflectada por un blanco y reinyectada en la cavidad láser. Como resultado, se genera una modulación de la amplitud y fase del láser, la cual puede ser "fácilmente" relacionada con diferentes efectos relativos al camino óptico del láser. La principal ventaja del método SMI es la simplicidad del sistema de medición el cual está compuesto de un diodo láser (LO) equipado con una tarjeta de procesamiento electrónico. una lente de enfoque o colimación puede ser utilizada con el fin de regular la reinyección de potencia y la distancia al blanco. Debido a que el SMI se genera con una pequeña cantidad de potencia es posible realizar mediciones incluso en blancos con reflexión difusa. . Si bien el método SMI ha sido estudiado ampliamente durante las 3 últimas décadas, aún existen diversos puntos de interés en su estudio. Uno de estos puntos corresponde a la mejora de resolución en la medida de desplazamiento, el cuál es uno de los temas abordados en el presente trabajo. Los métodos clásicos SMI para la medición de desplazamiento permiten alcanzar una resolución en el orden de A/2. El uso de algoritmos de procesamiento especializados puede permitir mejorar el límite de la técnica alcanzando resoluciones (por ejemplo) en el orden de N32. En este trabajo proponemos un método que teóricamente permitiría alcanzar resoluciones mejores que N1OO. La discusión en este punto se sitúa sobre la técnica differential self-mixing interferometry (DSMI), la cual hace uso de una modulación de referencia (mecánica o electrónica) para realizar la medición. Los resultados de diversas simulaciones sugieren que, en condiciones ideales, la técnica es capaz de producir una resolución superior a N1000. En la práctica, el límite encontrado es menor (N100), lo cual puede ser atribuido a condiciones de ruido y efectos de no linealidad en el láser. Para apoyar la idea propuesta diversas medidas simuladas y experimentales son presentadas a lo largo de esta Tesis. Después de explorar las ideas básicas de DSMI, un grupo de posibles aplicaciones para SMI y DSMI fueron exploradas en este trabajo. Una revisión de posibles aplicaciones biomédicas utilizando SMI fue explorada. Los resultados obtenidos sugieren que es posible obtener valores relacionados con constantes biomédicas de interés (p.e. APW) utilizando medidas de desplazamiento basadas en SMI. El método, sin embargo, no es lo suficientemente fiable como para producir medidas estables en un uso prolongado. El SNR de la señal puede introducir complicaciones durante el procesado SMI que puede derivar en errores de reconstrucción de la señal original. . El método DSMI fue probado en un prototipo de sistema AFM equipado con un cantiléver. Los resultados obtenidos sugieren que la técnica es capaz de medir movimientos producidos por un cantiléver de dimensiones micrométricas con alta resolución en bajas frecuencias. La medición de oscilaciones de mayor frecuencia podría ser alcanzada utilizando una configuración basada en modulación electrónica. El sistema propuesto fue capaz de detectar artefactos en el movimiento que podrían ser atribuidos a deflexiones en el cantiléver. Algunas posibles mejoras a esta implementación son sugeridas como puntos para futuras investigaciones alrededor de este tema.Postprint (published version

    ALL FIBER STRAIN SENSOR BASED ON THE LASER SELF-MIXING EFFECT

    No full text
    We present the development of a no-contact sensor based on the laser-self-mixing effect for the simultaneous measurement of the linear and angular (yaw and pitch) degrees-of-freedom of the motion of a moving stage. The sensor is made up of three laser diodes with integrated monitor photodiodes and a plane mirror target. The measurement principle is described and a series of experiments is performed to test the proposed method by direct comparison with a reference meter system. Finally, the sensor is tested under complex displacement to validate the feasibility of simultaneous measurements of more than one degree-of-freedom. The proposed technique makes the system easier to align with respect to the traditional interferometric systems and no further optical elements are required in the laser head except for the laser chip and its integrated photodiode, thus providing an effective compact and low-cost motion control system
    corecore