1,814 research outputs found

    Stability of dynamic coherent states in intrinsic Josephson-junction stacks near internal cavity resonance

    Full text link
    Stacks of intrinsic Josephson junctions in the resistive state can by efficiently synchronized by the internal cavity mode resonantly excited by the Josephson oscillations. We study the stability of dynamic coherent states near the resonance with respect to small perturbations. Three states are considered: the homogeneous and alternating-kink states in zero magnetic field and the homogeneous state in the magnetic field near the value corresponding to half flux quantum per junction. We found two possible instabilities related to the short-scale and long-scale perturbations. The homogeneous state in modulated junction is typically unstable with respect to the short-scale alternating phase deformations unless the Josephson current is completely suppressed in one half of the stack. The kink state is stable with respect to such deformations and homogeneous state in the magnetic field is only stable within a certain range of frequencies and fields. Stability with respect to the long-range deformations is controlled by resonance excitations of fast modes at finite wave vectors and typically leads to unstable range of the wave-vectors. This range shrinks with approaching the resonance and increasing the in-plane dissipation. As a consequence, in finite-height stacks the stability frequency range near the resonance increases with decreasing the height.Comment: 15 pages, 8 figures, to appear in Phys. Rev.

    Non-adiabatic Josephson Dynamics in Junctions with in-Gap Quasiparticles

    Get PDF
    Conventional models of Josephson junction dynamics rely on the absence of low energy quasiparticle states due to a large superconducting gap. With this assumption the quasiparticle degrees of freedom become "frozen out" and the phase difference becomes the only free variable, acting as a fictitious particle in a local in time Josephson potential related to the adiabatic and non-dissipative supercurrent across the junction. In this article we develop a general framework to incorporate the effects of low energy quasiparticles interacting non-adiabatically with the phase degree of freedom. Such quasiparticle states exist generically in constriction type junctions with high transparency channels or resonant states, as well as in junctions of unconventional superconductors. Furthermore, recent experiments have revealed the existence of spurious low energy in-gap states in tunnel junctions of conventional superconductors - a system for which the adiabatic assumption typically is assumed to hold. We show that the resonant interaction with such low energy states rather than the Josephson potential defines nonlinear Josephson dynamics at small amplitudes.Comment: 9 pages, 1 figur

    Phase diagram of geometric d-wave superconductor Josephson junctions

    Full text link
    We show that a constriction-type Josephson junction realized by an epitactic thin film of a d-wave superconductor with an appropriate boundary geometry exhibits intrinsic phase differences between 0 and pi depending on geometric parameters and temperature. Based on microscopic Eilenberger theory, we provide a general derivation of the relation between the change of the free energy of the junction and the current-phase relation. From the change of the free energy, we calculate phase diagrams and discuss transitions driven by geometric parameters and temperature.Comment: 9 pages, 11 figures. Phys. Rev. B, accepte

    Fluctuations of the Josephson current and electron-electron interactions in superconducting weak links

    Full text link
    We derive a microscopic effective action for superconducting contacts with arbitrary transmission distribution of conducting channels. Provided fluctuations of the Josephson phase remain sufficiently small our formalism allows to fully describe fluctuation and interaction effects in such systems. As compared to the well studied tunneling limit our analysis yields a number of qualitatively new features which occur due to the presence of subgap Andreev bound states in the system. We investigate the equilibrium supercurrent noise and evaluate the electron-electron interaction correction to the Josephson current across superconducting contacts. At T=0 this correction is found to vanish for fully transparent contacts indicating the absence of Coulomb effects in this limit.Comment: 12 pages, 4 figure

    Transport and magnetization dynamics in a superconductor/single-molecule magnet/superconductor junction

    Get PDF
    We study dc-transport and magnetization dynamics in a junction of arbitrary transparency consisting of two spin-singlet superconducting leads connected via a single classical spin precessing at the frequency Ω\Omega. The presence of the spin in the junction provides different transmission amplitudes for spin-up and spin-down quasiparticles as well as a time-dependent spin-flip transmission term. For a phase biased junction, we show that a steady-state superconducting charge current flows through the junction and that an out-of-equilibrium circularly polarized spin current, of frequency Ω\Omega, is emitted in the leads. Detailed understanding of the charge and spin currents is obtained in the entire parameter range. In the adiabatic regime, Ω2Δ\hbar \Omega \ll 2\Delta where Δ\Delta is the superconducting gap, and for high transparencies of the junction, a strong suppression of the current takes place around \vp \approx 0 due to an abrupt change in the occupation of the Andreev bound-states. At higher values of the phase and/or precession frequency, extended (quasi-particle like) states compete with the bound-states in order to carry the current. Well below the superconducting transition, these results are shown to be weakly affected by the back-action of the spin current on the dynamics of the precessing spin. Indeed, we show that the Gilbert damping due to the quasi-particle spin current is strongly suppressed at low-temperatures, which goes along with a shift of the precession frequency due to the condensate. The results obtained may be of interest for on-going experiments in the field of molecular spintronics.Comment: 19 pages, 13 figures (v3) Minor modifications per referee's comments. No change in results. (v2) 2 authors added, 1 reference added (Ref. 25), no change in the text and result

    Half-integer Shapiro steps at the 0-pi crossover of a ferromagnetic Josephson junction

    Get PDF
    We investigate the current-phase relation of S/F/S junctions near the crossover between the 0 and the pi ground states. We use Nb/CuNi/Nb junctions where this crossover is driven both by thickness and temperature. For a certain thickness a non-zero minimum of critical current is observed at the crossover temperature. We analyze this residual supercurrent by applying a high frequency excitation and observe the formation of half-integer Shapiro steps. We attribute these fractional steps to a doubling of the Josephson frequency due to a sin(2*phi) current-phase relation. This phase dependence is explained by the splitting of the energy levels in the ferromagnetic exchange field.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let

    Quantum Computational Gates with Radiation Free Couplings

    Full text link
    We examine a generic three state mechanism which realizes all fundamental single and double qubit quantum logic gates operating under the effect of adiabatically controllable static (radiation free) bias couplings between the states. At the instant of time that the gate operations are defined the third level is unoccupied which, in a certain sense, derives analogy with the recently suggested dissipation free qubit subspaces. The physical implementation of the mechanism is tentatively suggested in a form of the Aharonov-Bohm persistent current loop in crossed electric and magnetic fields, with the output of the loop read out by a (quantum) Hall effect aided mechanism.Comment: 21 pages including 7 figures, revte

    Advances in point-contact spectroscopy: two-band superconductor MgB2 (A review)

    Full text link
    Analysis of the point-contact spectroscopy (PCS) data on the new dramatic high-Tc_c superconductor MgB2_2 reveals quite different behavior of two disconnected σ\sigma and π\pi electronic bands, deriving from their anisotropy, different dimensionality, and electron-phonon interaction. PCS allows direct registration of both the superconducting gaps and electron-phonon-interaction spectral function of the two-dimensional σ\sigma and three-dimensional π\pi band, establishing correlation between the gap value and intensity of the high-Tc_c driving force -- the E2gE_{2g} boron vibration mode. PCS data on some nonsuperconducting transition-metal diborides are surveyed for comparison.Comment: 17 pages, 30 figs., will be published in Low Temp. Phys. V.30 (2004) N

    Coherent current states in mesoscopic four-terminal Josephson junction

    Full text link
    A theory is offered for the ballistic 4-terminal Josephson junction. The studied system consists of a mesoscopic two-dimensional normal rectangular layer which is attached in each side to the bulk superconducting banks (terminals). The relation between the currents through the different terminals, which is valid for arbitrary temperatures and junction sizes, is obtained. The nonlocal coupling of the supercurrents leads to a new effect, specific for the mesoscopic weak link between two superconducting rings; an applied magnetic flux through one of the rings produces a magnetic flux in the other ring even in the absence of an external flux through the other one. The phase dependent distributions of the local density of Andreev states, of the supercurrents and of the induced order parameter are obtained. The "interference pattern" for the anomalous average inside the two dimensional region can be regulated by the applied magnetic fluxes or the transport currents. For some values of the phase differences between the terminals, the current vortex state and the two dimensional phase slip center are appeared.Comment: 17 pages in Latex and 6 ps Figures. Will be published in Low Temp.Phy
    corecore