1,788 research outputs found

    Density matrix numerical renormalization group for non-Abelian symmetries

    Get PDF
    We generalize the spectral sum rule preserving density matrix numerical renormalization group (DM-NRG) method in such a way that it can make use of an arbitrary number of not necessarily Abelian, local symmetries present in the quantum impurity system. We illustrate the benefits of using non-Abelian symmetries by the example of calculations for the T-matrix of the two-channel Kondo model in the presence of magnetic field, for which conventional NRG methods produce large errors and/or take a long run-time.Comment: 12 pages, 6 figures, PRB forma

    Financial correlations at ultra-high frequency: theoretical models and empirical estimation

    Full text link
    A detailed analysis of correlation between stock returns at high frequency is compared with simple models of random walks. We focus in particular on the dependence of correlations on time scales - the so-called Epps effect. This provides a characterization of stochastic models of stock price returns which is appropriate at very high frequency.Comment: 22 pages, 8 figures, 1 table, version to appear in EPJ

    Binary merge model representation of the graph colouring problem

    Get PDF
    This paper describes a novel representation and ordering model that, aided by an evolutionary algorithm, is used in solving the graph k-colouring problem. Its strength lies in reducing the number of neighbors that need to be checked for validity. An empirical comparison is made with two other algorithms on a popular selection of problem instances and on a suite of instances in the phase transition. The new representation in combination with a heuristic mutation operator shows promising result

    Dynamical conductance in the two-channel Kondo regime of a double dot system

    Full text link
    We study finite-frequency transport properties of the double-dot system recently constructed to observe the two-channel Kondo effect [R. M. Potok et al., Nature 446, 167 (2007)]. We derive an analytical expression for the frequency-dependent linear conductance of this device in the Kondo regime. We show how the features characteristic of the 2-channel Kondo quantum critical point emerge in this quantity, which we compute using the results of conformal field theory as well as numerical renormalization group methods. We determine the universal cross-over functions describing non-Fermi liquid vs. Fermi liquid cross-overs and also investigate the effects of a finite magnetic field.Comment: 11 pages in PRB forma

    Atmospheric tar balls: aged primary droplets from biomass burning?

    Get PDF
    Atmospheric tar balls are particles of special morphology and composition that are fairly abundant in the plumes of biomass smoke. These particles form a specific subset of brown carbon (BrC) which has been shown to play a significant role in atmospheric shortwave absorption and, by extension, climate forcing. Here we suggest that tar balls are produced by the direct emission of liquid tar droplets followed by heat transformation upon biomass burning. For the first time in atmospheric chemistry we generated tar-ball particles from liquid tar obtained previously by dry distillation of wood in an all-glass apparatus in the laboratory with the total exclusion of flame processes. The particles were perfectly spherical with a mean optical diameter of 300 nm, refractory, externally mixed, and homogeneous in the contrast of the transmission electron microscopy (TEM) images. They lacked any graphene-like microstructure and exhibited a mean carbon-to-oxygen ratio of 10. All of the observed characteristics of laboratory-generated particles were very similar to those reported for atmospheric tar-ball particles in the literature, strongly supporting our hypothesis regarding the formation mechanism of atmospheric tar-ball particles

    Structure-property and composition-property relationships for poly(ethylene terephthalate) surfaces modified by helium plasma-based ion implantation

    Get PDF
    The surfaces of untreated and helium plasma-based ion implantation (He PBII) treated poly(ethylene terephthalate) (PET) samples were characterised by reflectance colorimetry, contact angle studies and measurements of surface electrical resistance. The results were related to the structural and compositional data obtained by the authors earlier on parallel samples by XPS and Raman spectroscopy. Inverse correlations between lightness and ID/IG ratio and between chroma and ID/IG ratio were obtained, suggesting that the PBII-treated PET samples darken and their colourfulness decreases with the increase of the portion of aromatic sp2 carbon rings in the chemical structure of the modified layer. Direct correlation between water contact angle and the ID/IG ratio and inverse correlations between surface energy and ID/IG ratio and between dispersive component of surface energy and ID/IG ratio were found, reflecting that surface wettability, surface energy and its dispersive component decrease with the formation of surface structure, characterised again by enhanced portion of aromatic sp2 carbon rings. The surface electrical resistance decreased with the increase of the surface C-content determined by XPS and also with the increase of the surface concentration of conjugated double bonds, reflected by the increase of the pi-pi* shake-up satellite of the C 1s peak

    The effect of biodiesel by-products on germination and plant growth

    Get PDF

    Preparation and Characterization of Some Particulate Materials in the Aluminum Industry

    Get PDF
    Preparation and characterization techniques for the following particulate materials are reviewed: micromineralogical samples of bauxite, alumina and its trihydroxide, as well as sedimentary and respirable particles. Scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDS) and image analysis were used to characterize the microminerals of bauxite. Comparisons were made among micromineralogical samples with various grain size fractions and the degree of weathering could be quantified. Programs were developed for characterization of the sandy and floury types of aluminum trihydroxide and alumina. We have used backscattered electron SEM images to characterize the size and shape of various aluminum trihydroxides. Comparison could be made between sandy and floury types of aluminum trihydroxide/alumina samples and the effects of technological changes could be quantified. The shape and composition of respirable particles in alumina plants were studied from the point of view of environmental protection

    Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: I. Transitions in the one-phase liquid region

    Get PDF
    The published version of this Article can be accessed from the link below - Copyright @ 2007 American Institute of PhysicsThe phase field theory (PFT) has been applied to predict equilibrium interfacial properties and nucleation barrier in the binary eutectic system Ag-Cu using double well and interpolation functions deduced from a Ginzburg-Landau expansion that considers fcc (face centered cubic) crystal symmetries. The temperature and composition dependent free energies of the liquid and solid phases are taken from CALculation of PHAse Diagrams-type calculations. The model parameters of PFT are fixed so as to recover an interface thickness of approximately 1 nm from molecular dynamics simulations and the interfacial free energies from the experimental dihedral angles available for the pure components. A nontrivial temperature and composition dependence for the equilibrium interfacial free energy is observed. Mapping the possible nucleation pathways, we find that the Ag and Cu rich critical fluctuations compete against each other in the neighborhood of the eutectic composition. The Tolman length is positive and shows a maximum as a function of undercooling. The PFT predictions for the critical undercooling are found to be consistent with experimental results. These results support the view that heterogeneous nucleation took place in the undercooling experiments available at present. We also present calculations using the classical droplet model classical nucleation theory (CNT) and a phenomenological diffuse interface theory (DIT). While the predictions of the CNT with a purely entropic interfacial free energy underestimate the critical undercooling, the DIT results appear to be in a reasonable agreement with the PFT predictions.This work has been supported by the Hungarian Academy of Sciences under Contract No. OTKA-K-62588 and by the ESA PECS Contract Nos. 98005, 98021, and 98043
    corecore