647 research outputs found
Giant In-Particle Field Concentration and Fano Resonances at Light Scattering by High-Refractive Index Particles
A detailed analytical inspection of light scattering by a particle with high
refractive index m+i\kappa and small dissipative constant \kappa is presented.
We have shown that there is a dramatic difference in the behavior of the
electromagnetic field within the particle (inner problem) and the scattered
field outside it (outer problem). With an increase in m at fix values of the
other parameters, the field within the particle asymptotically converges to a
periodic function of m. The electric and magnetic type Mie resonances of
different orders overlap substantially. It may lead to a giant concentration of
the electromagnetic energy within the particle. At the same time, we
demonstrate that identical transformations of the solution for the outer
problem allow to present each partial scattered wave as a sum of two
partitions. One of them corresponds to the m-independent wave, scattered by a
perfectly reflecting particle and plays the role of a background, while the
other is associated with the excitation of a sharply-m-dependent resonant Mie
mode. The interference of the partitions brings about a typical asymmetric Fano
profile. The explicit expressions for the parameters of the Fano profile have
been obtained "from the first principles" without any additional assumptions
and/or fitting. In contrast to the inner problem, at an increase in m the
resonant modes of the outer problem die out, and the scattered field converges
to the universal, m-independent profile of the perfectly reflecting sphere.
Numerical estimates of the discussed effects for a gallium phosphide particle
are presented.Comment: 18 pages, 10 figure
Radiation Pressure Quantization
Kepler's observation of comets tails initiated the research on the radiation
pressure of celestial objects and 250 years later they found new incarnation
after the Maxwell's equations were formulated to describe a plethora of
light-matter coupling phenomena. Further, quantum mechanics gave birth to the
photon drag effect. Here, we predict a novel universal phenomenon which can be
referred to as quantization of the radiation pressure. We develop a microscopic
theory of this effect which can be applied to a general system containing
Bose-Einstein-condensed particles, which possess an internal structure of
quantum states. By analyzing the response of the system to an external
electromagnetic field we find that such drag results in a flux of particles
constituting both the condensate and the excited states. We show that in the
presence of the condensed phase, the response of the system becomes quantized
which manifests itself in a step-like behavior of the particle flux as a
function of electromagnetic field frequency with the elementary quantum
determined by the internal energy structure of the particles.Comment: Manuscript: 4 pages, 3 figure
Fano resonance in quadratic waveguide arrays
We study resonant light scattering in arrays of channel optical waveguides
where tunable quadratic nonlinearity is introduced as nonlinear defects by
periodic poling of single (or several) waveguides in the array. We describe
novel features of wave scattering that can be observed in this structure and
show that it is a good candidate for the first observation of Fano resonance in
nonlinear optics.Comment: 3 pages, 3 figures, submitted to Optics Letters, slightly revise
Off-resonance field enhancement by spherical nanoshells
We study light scattering by spherical nanoshells consistent of
metal/dielectric composites. We consider two geometries of metallic nanoshell
with dielectric core, and dielectric coated metallic nanoparticle. We
demonstrate that for both geometries the local field enhancement takes place
out of resonance regions ("dark states"), which, nevertheless, can be
understood in terms of the Fano resonance. At optimal conditions the light is
stronger enhanced inside the dielectric material. By using nonlinear dielectric
materials it will lead to a variety nonlinear phenomena applicable for
photonics applications
Wave scattering by discrete breathers
We present a theoretical study of linear wave scattering in one-dimensional
nonlinear lattices by intrinsic spatially localized dynamic excitations or
discrete breathers. These states appear in various nonlinear systems and
present a time-periodic localized scattering potential for plane waves. We
consider the case of elastic one-channel scattering, when the frequencies of
incoming and transmitted waves coincide, but the breather provides with
additional spatially localized ac channels whose presence may lead to various
interference patterns. The dependence of the transmission coefficient on the
wave number q and the breather frequency Omega_b is studied for different types
of breathers: acoustic and optical breathers, and rotobreathers. We identify
several typical scattering setups where the internal time dependence of the
breather is of crucial importance for the observed transmission properties.Comment: 17 pages, 19 figures, submitted to CHAOS (Focus Issue
Radiation Pressure Quantization
Kepler's observation of comets tails initiated the research on the radiation
pressure of celestial objects and 250 years later they found new incarnation
after the Maxwell's equations were formulated to describe a plethora of
light-matter coupling phenomena. Further, quantum mechanics gave birth to the
photon drag effect. Here, we predict a novel universal phenomenon which can be
referred to as quantization of the radiation pressure. We develop a microscopic
theory of this effect which can be applied to a general system containing
Bose-Einstein-condensed particles, which possess an internal structure of
quantum states. By analyzing the response of the system to an external
electromagnetic field we find that such drag results in a flux of particles
constituting both the condensate and the excited states. We show that in the
presence of the condensed phase, the response of the system becomes quantized
which manifests itself in a step-like behavior of the particle flux as a
function of electromagnetic field frequency with the elementary quantum
determined by the internal energy structure of the particles.Comment: Manuscript: 4 pages, 3 figure
- …