5 research outputs found

    Depinning transition of dislocation assemblies: pileup and low-angle grain boundary

    Get PDF
    We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the cases of regularly spaced pileups and low angle grain boundaries interacting with a disordered stress landscape provided by solute atoms, or by other immobile dislocations present in non-active slip systems. Using linear elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel results as a consequence of long range interactions between dislocations. In light of this result, we revise statistical depinning theories and find novel results for Zener pinning in grain growth. Finally, we discuss the scaling properties of the dynamics of dislocation assemblies and compare theoretical results with numerical simulations.Comment: 13 pages, 8 figure

    Depinning transition of dislocation assemblies: pileup and low-angle grain boundary

    Get PDF
    We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the cases of regularly spaced pileups and low angle grain boundaries interacting with a disordered stress landscape provided by solute atoms, or by other immobile dislocations present in non-active slip systems. Using linear elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel results as a consequence of long range interactions between dislocations. In light of this result, we revise statistical depinning theories and find novel results for Zener pinning in grain growth. Finally, we discuss the scaling properties of the dynamics of dislocation assemblies and compare theoretical results with numerical simulations.Comment: 13 pages, 8 figure
    corecore