113 research outputs found

    Possibility of local pair existence in optimally doped SmFeAsO(1-x) in pseudogap regime

    Full text link
    We report the analysis of pseudogap Delta* derived from resistivity experiments in FeAs-based superconductor SmFeAsO(0.85), having a critical temperature T_c = 55 K. Rather specific dependence Delta*(T) with two representative temperatures followed by a minimum at about 120 K was observed. Below T_s = 147 K, corresponding to the structural transition in SmFeAsO, Delta*(T) decreases linearly down to the temperature T_AFM = 133 K. This last peculiarity can likely be attributed to the antiferromagnetic (AFM) ordering of Fe spins. It is believed that the found behavior can be explained in terms of Machida, Nokura, and Matsubara (MNM) theory developed for the AFM superconductors.Comment: 5 pages, 2 figure

    Pseudogap from ARPES experiment: three gaps in cuprates and topological superconductivity

    Get PDF
    A term first coined by Mott back in 1968 a `pseudogap' is the depletion of the electronic density of states at the Fermi level, and pseudogaps have been observed in many systems. However, since the discovery of the high temperature superconductors (HTSC) in 1986, the central role attributed to the pseudogap in these systems has meant that by many researchers now associate the term pseudogap exclusively with the HTSC phenomenon. Recently, the problem has got a lot of new attention with the rediscovery of two distinct energy scales (`two-gap scenario') and charge density waves patterns in the cuprates. Despite many excellent reviews on the pseudogap phenomenon in HTSC, published from its very discovery up to now, the mechanism of the pseudogap and its relation to superconductivity are still open questions. The present review represents a contribution dealing with the pseudogap, focusing on results from angle resolved photoemission spectroscopy (ARPES) and ends up with the conclusion that the pseudogap in cuprates is a complex phenomenon which includes at least three different `intertwined' orders: spin and charge density waves and preformed pairs, which appears in different parts of the phase diagram. The density waves in cuprates are competing to superconductivity for the electronic states but, on the other hand, should drive the electronic structure to vicinity of Lifshitz transition, that could be a key similarity between the superconducting cuprates and iron based superconductors. One may also note that since the pseudogap in cuprates has multiple origins there is no need to recoin the term suggested by Mott.Comment: invited review, more info at http://www.imp.kiev.ua/~kor

    Paraconductivity of K-doped SrFe2As2 superconductor

    Full text link
    Paraconductivity of the optimally K-doped SrFe2As2 superconductor is investigated within existing fluctuation mechanisms. The in-plane excess conductivity has been measured in high quality single crystals, with a sharp superconducting transition at Tc=35.5K and a transition width less than 0.3K. The data have been also acquired in external magnetic field up to 14T. We show that the fluctuation conductivity data in zero field and for temperatures close to Tc, can be explained within a three-dimensional Lawrence-Doniach theory, with a negligible Maki-Thompson contribution. In the presence of the magnetic field, it is shown that paraconductivity obeys the three-dimensional Ullah-Dorsey scaling law, above 2T and for H||c. The estimated upper critical field and the coherence length nicely agree with the available experimental data.Comment: 12 pages, 5 figure

    Subthreshold antiproton production in proton-carbon reactions

    Full text link
    Data from KEK on subthreshold antiproton as well as on pi(+-) and K(+-) production in proton-nucleus reactions are described at projectile energies between 3.5 and 12.0 GeV. We use a model which considers a hadron-nucleus reaction as an incoherent sum over collisions of the projectile with a varying number of target nucleons. It samples complete events and allows thus for the simultaneous consideration of all particle species measured. The overall reproduction of the data is quite satisfactory. It is shown that the contributions from the interaction of the projectile with groups of several target nucleons are decisive for the description of subthreshold production. Since the collective features of subthreshold production become especially significant far below the threshold, the results are extrapolated down to COSY energies. It is concluded that an antiproton measurement at ANKE-COSY should be feasible, if the high background of other particles can be efficiently suppressed.Comment: 15 pages, 5 figures, gzipped tar file, submitted to J. Phys. G v2: Modification of text due to demands of referee

    Π“Π΅Π½ΠΎΠΌΠ½Ρ‹Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π² ΠΏΡƒΠ»ΡŒΠΌΠΎΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ: Ρ€ΠΎΠ»ΡŒ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ астмы ΠΈ хроничСской обструктивной Π±ΠΎΠ»Π΅Π·Π½ΠΈ Π»Π΅Π³ΠΊΠΈΡ…

    Get PDF
    MicroRNAs (miRNAs) are small noncoding RNA molecules that affect gene expression and thus take part in the epigenetic regulation of almost all physiological and pathological processes. About 1,800 human miRNAs have been discovered to date; however, biological functions and protein targets for the majority remain to be unknown. Within the respiratory system, miRNAs contribute to the lung growth and lifelong maintenance of pulmonary homeostasis. Recently, the leading role of miRNAs in pathogenesis of various pulmonary diseases has been found, including asthma, chronic obstructive pulmonary disease (COPD) and lung cancer. Due to a significant progress in studying interactions between genes and their products and environmental factors, a great role of epigenetic variability, which is gene expression change not related to DNA damage, but could be inherited consistently, became apparent. There are three levels of epigenetic regulation corresponding to three main mechanisms: genomic (DNA methylation), proteomic (histone modification) and transcriptomic (regulation through RNA, primarily miRNA). Extending our knowledge on a role of miRNAs for the respiratory system could open new therapeutic targets and diagnostic markers for respiratory diseases, particularly asthma and COPD.ΠœΠΈΠΊΡ€ΠΎΠ ΠΠš – это ΠΌΠ°Π»Ρ‹Π΅ Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ РНК, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Π³Π΅Π½ΠΎΠ² ΠΈ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² эпигСнСтичСской рСгуляции практичСски всСх физиологичСских ΠΈ патологичСских процСссов. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 1Β 800 ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π½Π° сСгодняшний дСнь ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹, ΠΎΠ΄Π½Π°ΠΊΠΎ биологичСская функция ΠΈ Π±Π΅Π»ΠΊΠΈ-мишСни для Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° ΠΈΠ· Π½ΠΈΡ… ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ нСизвСстными. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ систСмы ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ для развития Π»Π΅Π³ΠΊΠΈΡ… ΠΈ поддСрТания Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠ³ΠΎ гомСостаза Π½Π° протяТСнии всСй ΠΆΠΈΠ·Π½ΠΈ. Π’ послСдниС Π³ΠΎΠ΄Ρ‹ Π±Ρ‹Π»Π° ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Π° главнСйшая Ρ€ΠΎΠ»ΡŒ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš Π² ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Π² Ρ‚. Ρ‡. Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ астмы (БА), хроничСской обструктивной Π±ΠΎΠ»Π΅Π·Π½ΠΈ Π»Π΅Π³ΠΊΠΈΡ… (Π₯ΠžΠ‘Π›) ΠΈ Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ. Благодаря Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ прогрСссу Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ взаимодСйствий ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Π΅Π½Π°ΠΌΠΈ ΠΈ ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌΠΈ с Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды стала ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎΠΉ огромная Ρ€ΠΎΠ»ΡŒ эпигСнСтичСской измСнчивости – ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ экспрСссии Π³Π΅Π½ΠΎΠ², Π½Π΅ связанных с Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ структуры Π”ΠΠš, ΠΎΠ΄Π½Π°ΠΊΠΎ способных устойчиво ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Ρ‚ΡŒΡΡ Π² ряду ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠΉ. Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ 3 уровня эпигСнСтичСской рСгуляции ΠΈ соотвСтствСнно – 3 Π΅Π΅ основных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°: Π³Π΅Π½ΠΎΠΌΠ½Ρ‹ΠΉ (ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π”ΠΠš), ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠΌΠ½Ρ‹ΠΉ (модификация гистонов) ΠΈ транскриптомный (рСгуляция посрСдством РНК, Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš). УспСхи Π² ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ Ρ€ΠΎΠ»ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš Π² Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ систСмС ΠΏΠΎΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΎΠ»ΠΈΡ‚ΡŒ свСт Π½Π° Π½ΠΎΠ²Ρ‹Π΅ пСрспСктивы Π² поискС тСрапСвтичСских мишСнСй ΠΈ диагностичСских ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² для Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ рСспираторной систСмы, Π² частности БА ΠΈ Π₯ΠžΠ‘Π›
    • …
    corecore