131 research outputs found
Towards modeling of comprehensive assessment for licensing in higher education
In the modern society information technologies, services, quality become the determinative factors of success of any business. The questions of quality management are especially relevant in social sphere, since organization oriented on quality of its processes provides the improvement of people living standards. Information computer technologies (ICT) are the powerful tool for increasing the performance of decision-making processes. Formalization of management problems and adequate mathematical models provide ICT with techniques and methods of solving the application problems in different domains and improving business performance. Higher education is a unique social and economic environment. The quality of its functioning influences many processes of successive development of society.Therefore elaboration of ICT in higher education domain remains the challenging problem for specialists in computer sciences
High-frequency homogenization for periodic media
This article is available open access through the publisherβs website at the link below. Copyright @ 2010 The Royal Society.An asymptotic procedure based upon a two-scale approach is developed for wave propagation in a doubly periodic inhomogeneous medium with a characteristic length scale of microstructure far less than that of the macrostructure. In periodic media, there are frequencies for which standing waves, periodic with the period or double period of the cell, on the microscale emerge. These frequencies do not belong to the low-frequency range of validity covered by the classical homogenization theory, which motivates our use of the term βhigh-frequency homogenizationβ when perturbing about these standing waves. The resulting long-wave equations are deduced only explicitly dependent upon the macroscale, with the microscale represented by integral quantities. These equations accurately reproduce the behaviour of the Bloch mode spectrum near the edges of the Brillouin zone, hence yielding an explicit way for homogenizing periodic media in the vicinity of βcell resonancesβ. The similarity of such model equations to high-frequency long wavelength asymptotics, for homogeneous acoustic and elastic waveguides, valid in the vicinities of thickness resonances is emphasized. Several illustrative examples are considered and show the efficacy of the developed techniques.NSERC (Canada) and the EPSRC
ΠΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π·ΠΎΠ»ΠΎΡΠΎΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π½Π° Β«Π’Π΅ΡΡΠΈΡΠΎΡΠΈΠΈΒ» ΠΠ»Π΅Π³Π° ΠΡΠ²Π°Π΅Π²Π° (ΡΠ΅Π²Π΅Ρ Π§ΡΠΊΠΎΡΡΠΊΠΎΠ³ΠΎ Π½Π°Π³ΠΎΡΡΡ)
A sample of a gold-bearing quartz vein from the Upper-Ichuveem ore occurrence, discovered in the Triassic terrigenous complex in the north of the Chukotka Upland, the Oleg Kuvaev's βTerritoryβ, had been comprehensively studied. The gross gold grade was estimated at 3β4 g / t. The vein includes quartz, native gold, sulfide-gold-silver solid solutions, alumoseladonite, aluminium-sulfate-phosphates Fe-Pb-Mg-Ca compound, apatite, pyrite, iron-titanium oxides, litharge, native phases composed of Fe (Ni), Ag-Pb-Bi, Fe-Al-PS-As, multicomponent ocher of hypergene origin. Native gold ranges from medium to fine. The vein contains particles of non-crystalline organic matter, which is close in composition of organic groups to polysaccharides. It is possible that the carbon particles found in the gold-quartz vein are of an abiogenic nature and can be compared with abiogenic condensed organelles in the products of modern volcanism. The data obtained make it possible to attribute the Upper Ichuveem gold ore occurrence to a low-sulfide gold-quartz formation, but with additional signs of gold-silver and polymetallic formations, which can be regarded as a favorable prerequisite for prospecting and exploration in Oleg Kuvaev's Β«TerritoryΒ» not only of gold-placer deposits, but also of lode gold deposits.ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ ΠΎΠ±ΡΠ°Π·Π΅Ρ Π·ΠΎΠ»ΠΎΡΠΎΠ½ΠΎΡΠ½ΠΎΠΉ ΠΊΠ²Π°ΡΡΠ΅Π²ΠΎΠΉ ΠΆΠΈΠ»Ρ Ρ ΠΠ΅ΡΡ
Π½Π΅-ΠΡΡΠ²Π΅Π΅ΠΌΡΠΊΠΎΠ³ΠΎ ΡΡΠ΄ΠΎΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ, Π²ΡΡΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π² ΡΡΠΈΠ°ΡΠΎΠ²ΠΎΠΌ ΡΠ΅ΡΡΠΈΠ³Π΅Π½Π½ΠΎΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ΅ Π½Π° ΡΠ΅Π²Π΅ΡΠ΅ Π§ΡΠΊΠΎΡΡΠΊΠΎΠ³ΠΎ Π½Π°Π³ΠΎΡΡΡ β Β«Π’Π΅ΡΡΠΈΡΠΎΡΠΈΠΈΒ» ΠΠ»Π΅Π³Π° ΠΡΠ²Π°Π΅Π²Π°. ΠΠ°Π»ΠΎΠ²ΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π·ΠΎΠ»ΠΎΡΠ° ΠΎΡΠ΅Π½ΠΈΠ²Π°Π΅ΡΡΡ Π² 3β4 Π³/Ρ. Π ΡΠΎΡΡΠ°Π² ΠΆΠΈΠ»Ρ Π²Ρ
ΠΎΠ΄ΡΡ ΠΊΠ²Π°ΡΡ, ΡΠ°ΠΌΠΎΡΠΎΠ΄Π½ΠΎΠ΅ Π·ΠΎΠ»ΠΎΡΠΎ, ΡΡΠ»ΡΡΠΈΠ΄Π½ΠΎ-Π·ΠΎΠ»ΠΎΡΠΎ-ΡΠ΅ΡΠ΅Π±ΡΡΠ½ΡΠ΅ ΡΠ²Π΅ΡΠ΄ΡΠ΅ ΡΠ°ΡΡΠ²ΠΎΡΡ, Π°Π»ΡΠΌΠΎΡΠ΅Π»Π°Π΄ΠΎΠ½ΠΈΡ, Π°Π»ΡΠΌΠΎ-ΡΡΠ»ΡΡΠ°ΡΠΎ-ΡΠΎΡΡΠ°ΡΡ Fe-Pb-Mg-Ca ΡΠΎΡΡΠ°Π²Π°, Π°ΠΏΠ°ΡΠΈΡ, ΠΏΠΈΡΠΈΡ, ΠΆΠ΅Π»Π΅Π·ΠΎ-ΡΠΈΡΠ°Π½ΠΎΠ²ΡΠ΅ ΠΎΠΊΡΠΈΠ΄Ρ, Π³Π»ΡΡ, ΡΠ°ΠΌΠΎΡΠΎΠ΄Π½ΡΠ΅ ΡΠ°Π·Ρ ΡΠΎΡΡΠ°Π²Π° Fe (Ni), Ag-Pb-Bi, Fe-Al-P-S-As, ΠΏΠΎΠ»ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΠ΅ ΠΎΡ
ΡΡ Π³ΠΈΠΏΠ΅ΡΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ. Π‘Π°ΠΌΠΎΡΠΎΠ΄Π½ΠΎΠ΅ Π·ΠΎΠ»ΠΎΡΠΎ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ ΠΎΡ ΡΡΠ΅Π΄Π½Π΅- Π΄ΠΎ Π²ΡΡΠΎΠΊΠΎΠΏΡΠΎΠ±Π½ΠΎΠ³ΠΎ. Π ΡΠΎΡΡΠ°Π²Π΅ ΠΆΠΈΠ»Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Ρ ΡΠ°ΡΡΠΈΡΡ Π½Π΅ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π°, Π±Π»ΠΈΠ·ΠΊΠΎΠ³ΠΎ ΠΏΠΎ ΡΠΎΡΡΠ°Π²Ρ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π³ΡΡΠΏΠΏ ΠΊ ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄Π°ΠΌ. ΠΠ΅ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΎ, ΡΡΠΎ Π²ΡΡΠ²Π»Π΅Π½Π½ΡΠ΅ Π² Π·ΠΎΠ»ΠΎΡΠΎΠΊΠ²Π°ΡΡΠ΅Π²ΠΎΠΉ ΠΆΠΈΠ»Π΅ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΠ΅ ΡΠ°ΡΡΠΈΡΡ ΠΈΠΌΠ΅ΡΡ Π°Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΡ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΈ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Ρ Ρ Π°Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΠΌΠΈ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΠΎΡΠ³Π°Π½ΠΎΠΈΠ΄Π°ΠΌΠΈ Π² ΠΏΡΠΎΠ΄ΡΠΊΡΠ°Ρ
ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π²ΡΠ»ΠΊΠ°Π½ΠΈΠ·ΠΌΠ°. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΎΡΠ½Π΅ΡΡΠΈ ΠΠ΅ΡΡ
Π½Π΅-ΠΡΡΠ²Π΅Π΅ΠΌΡΠΊΠΎΠ΅ Π·ΠΎΠ»ΠΎΡΠΎΡΡΠ΄Π½ΠΎΠ΅ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊ ΠΌΠ°Π»ΠΎΡΡΠ»ΡΡΠΈΠ΄Π½ΠΎΠΉ Π·ΠΎΠ»ΠΎΡΠΎΠΊΠ²Π°ΡΡΠ΅Π²ΠΎΠΉ ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, Π½ΠΎ Ρ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ Π·ΠΎΠ»ΠΎΡΠΎΡΠ΅ΡΠ΅Π±ΡΡΠ½ΠΎΠΉ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΡΠΌΠ°ΡΠΈΠΉ, ΡΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠ΅Π½ΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΡΡΠ»ΠΊΡ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠΎΠ² ΠΈ ΡΠ°Π·Π²Π΅Π΄ΠΎΠΊ Π½Π° Β«Π’Π΅ΡΡΠΈΡΠΎΡΠΈΠΈΒ» ΠΠ»Π΅Π³Π° ΠΡΠ²Π°Π΅Π²Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π·ΠΎΠ»ΠΎΡΠΎ-ΡΠΎΡΡΡΠΏΠ½ΡΡ
, Π½ΠΎ ΠΈ Π·ΠΎΠ»ΠΎΡΠΎ-ΠΊΠΎΡΠ΅Π½Π½ΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ
DISCRETE BREATHERS IN MONOATOMIC FCC CRYSTALS AU, PD
ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π² ΠΌΠΎΠ½ΠΎΠ°ΡΠΎΠΌΠ½ΡΡ
ΠΠ¦Π-ΠΊΡΠΈΡΡΠ°Π»Π»Π°Ρ
Au ΠΈ Pd Π±ΡΠ» ΠΏΠΎΠ»ΡΡΠ΅Π½ Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΡΠΉ Π±ΡΠΈΠ·Π΅Ρ Ρ ΠΆΠ΅ΡΡΠΊΠΈΠΌ ΡΠΈΠΏΠΎΠΌ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡΠΈ. ΠΠ·ΡΡΠ΅Π½Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π±ΡΠΈΠ·Π΅ΡΠ°, ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΎΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π½Π° Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π±ΡΠΈΠ·Π΅ΡΠ°.By method of molecular dynamics in the monoatomic FCC crystals Au and Pd was obtained discrete breathers with a hard type of nonlinearity. The characteristics of discrete breathers, the dependence of frequency of the amplitude were received. The influence of the initial conditions on the characteristics of discrete breathers
Uncoupling of ATP-Mediated Calcium Signaling and Dysregulated Interleukin-6 Secretion in Dendritic Cells by Nanomolar Thimerosal
Dendritic cells (DCs), a rare cell type widely distributed in the soma, are potent antigen-presenting cells that initiate primary immune responses. DCs rely on intracellular redox state and calcium (Ca(2+)) signals for proper development and function, but the relationship between these two signaling systems is unclear. Thimerosal (THI) is a mercurial used to preserve vaccines and consumer products, and is used experimentally to induce Ca(2+) release from microsomal stores. We tested adenosine triphosphate (ATP)-mediated Ca(2+) responses of DCs transiently exposed to nanomolar THI. Transcriptional and immunocytochemical analyses show that murine myeloid immature DCs (IDCs) and mature DCs (MDCs) express inositol 1,4,5-trisphosphate receptor (IP(3)R) and ryanodine receptor (RyR) Ca(2+) channels, known targets of THI. IDCs express the RyR1 isoform in a punctate distribution that is densest near plasma membranes and within dendritic processes, whereas IP(3)Rs are more generally distributed. RyR1 positively and negatively regulates purinergic signaling because ryanodine (Ry) blockade a) recruited 80% more ATP responders, b) shortened ATP-mediated Ca(2+) transients > 2-fold, and c) produced a delayed and persistent rise (β₯ 2-fold) in baseline Ca(2+). THI (100 nM, 5 min) recruited more ATP responders, shortened the ATP-mediated Ca(2+) transient (β₯ 1.4-fold), and produced a delayed rise (β₯ 3-fold) in the Ca(2+) baseline, mimicking Ry. THI and Ry, in combination, produced additive effects leading to uncoupling of IP(3)R and RyR1 signals. THI altered ATP-mediated interleukin-6 secretion, initially enhancing the rate of cytokine secretion but suppressing cytokine secretion overall in DCs. DCs are exquisitely sensitive to THI, with one mechanism involving the uncoupling of positive and negative regulation of Ca(2+) signals contributed by RyR1
Π€ΠΎΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ½Π°ΠΊΡΠΈΠ²Π°ΡΠΈΡ Mycobacterium tuberculosis ΠΌΠ΅ΡΠΈΠ»Π΅Π½ΠΎΠ²ΡΠΌ ΡΠΈΠ½ΠΈΠΌ in vitro
The objective: to investigate the anti-tuberculosis effect of laser photodynamic inactivation (PDI) of M. tuberculosis H37Rv in vitro by methylene blue (MB) in the minimum concentration (1 ΞΌg/ml) with laser radiation of 662 nm. Subjects and methods. A comparative analysis of the intensity of growth of Mycobacterium tuberculosis H37Rv after laser irradiation and laser FDI by MB with different doses of light energy was carried out. Results. Laser radiation with a wavelength of 662 nm was found to have an inhibitory effect on the growth of M. tuberculosis H37Rv. FDI of Mycobacterium tuberculosis was first registered in the presence of a minimum concentration of MB (1 Β΅g/ml) which suppressed colony growth by 97 and 93% when they were processed by radiation with a wavelength of 662 nm with the lowest density of doses of light energy (46.9 and 93.75 J/cm2).Π¦Π΅Π»Ρ: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΡΠ±Π΅ΡΠΊΡΠ»Π΅Π·Π½ΡΡ
ΡΡΡΠ΅ΠΊΡΠΎΠ² Π»Π°Π·Π΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ (Π€ΠΠ) M. tuberculosis H37Rv in vitro ΠΌΠ΅ΡΠΈΠ»Π΅Π½ΠΎΠ²ΡΠΌ ΡΠΈΠ½ΠΈΠΌ (ΠΠ‘) Π² ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ (1 ΠΌΠΊΠ³/ΠΌΠ») ΠΏΡΠΈ Π»Π°Π·Π΅ΡΠ½ΠΎΠΌ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ 662 Π½ΠΌ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΎΡΡΠ° Mycobacterium tuberculosis H37Rv ΠΏΠΎΡΠ»Π΅ Π»Π°Π·Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΈ Π»Π°Π·Π΅ΡΠ½ΠΎΠΉ Π€ΠΠ ΠΠ‘ ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π΄ΠΎΠ·Π°Ρ
ΡΠ²Π΅ΡΠΎΠ²ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ Π»Π°Π·Π΅ΡΠ½ΠΎΠ΅ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ 662 Π½ΠΌ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΡΡΡΠ΅Π΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΡΠΎΡΡΠΎΠ²ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° M. tuberculosis H37Rv. ΠΠΏΠ΅ΡΠ²ΡΠ΅ Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°Π½Π° Π€ΠΠ ΠΌΠΈΠΊΠΎΠ±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΡΡΠ±Π΅ΡΠΊΡΠ»Π΅Π·Π° Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΠ‘ (1 ΠΌΠΊΠ³/ΠΌΠ»), ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΡΡΡ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΡΡΠ° ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΉ Π½Π° 97 ΠΈ 93% ΠΏΡΠΈ ΠΈΡ
ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π»ΠΈΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ 662 Π½ΠΌ Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ Π΄ΠΎΠ· ΡΠ²Π΅ΡΠΎΠ²ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ (46,9 ΠΈ 93,75 ΠΠΆ/ΡΠΌ2)
Π€ΠΠ’ΠΠΠΠΠΠΠΠ§ΠΠ‘ΠΠΠ― ΠΠΠΠΠ’ΠΠΠΠ¦ΠΠ― MYCOBACTERIUM TUBERCULOSIS Π ΠΠΠΠ₯ΠΠΠ ΠΠΠΠ IN VITRO
Goal: to detect the best mode of in vitro photodynamic inactivation of M. tuberculosis by Radahlorin.Subjects and methods. The activity of culture of M. tuberculosis, H37Rv strain, photosensitized by 0.00005% Radohlorin was compared and the intensity of growth was assessed after photodynamic inactivation by different doses of light energy with 662 nm wavelength.Results. For the first time, anti-microbial properties of E6 chlorine in the form of medicamental photosensitizer (0.00005% Radohlorin) suppressing museum strain of M. tuberculosis of H37Rv were detected. Photoinactivation of M. tuberculosis depends on the dose and achieves its maximum in 10Β minutes of light exposure with light energy of 0.5 W.Β Π¦Π΅Π»Ρ: Π²ΡΡΠ²ΠΈΡΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠ΅ΠΆΠΈΠΌ ΡΠΎΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ (Π€ΠΠ) M. tuberculosis ΡΠ°Π΄Π°Ρ
Π»ΠΎΡΠΈΠ½ΠΎΠΌ in vitro.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΊΡΠ»ΡΡΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ M. tuberculosis H37Rv, ΡΠΎΡΠΎΡΠ΅Π½ΡΠΈΠ±ΠΈΠ»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ°Π΄Π°Ρ
Π»ΠΎ- ΡΠΈΠ½ΠΎΠΌ 0,00005%, Ρ ΠΎΡΠ΅Π½ΠΊΠΎΠΉ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΎΡΡΠ° ΠΏΠΎΡΠ»Π΅ Π€ΠΠ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ Π΄ΠΎΠ·Π°ΠΌΠΈ ΡΠ²Π΅ΡΠΎΠ²ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Ρ Π΄Π»ΠΈΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ 662 Π½ΠΌ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΏΠ΅ΡΠ²ΡΠ΅ Π²ΡΡΠ²Π»Π΅Π½Ρ Π°Π½ΡΠΈΠΌΠΈΠΊΠΎΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Ρ
Π»ΠΎΡΠΈΠ½Π° Π6 Π² Π²ΠΈΠ΄Π΅ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΠΎΡΠ΅Π½ΡΠΈΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΎΡΠ° (ΡΠ°Π΄Π°Ρ
Π»ΠΎΡΠΈΠ½ 0,00005%) Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΌΡΠ·Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΠΌΠΌΠ° M. tuberculosis H37Rv. Π€ΠΎΡΠΎΠΈΠ½Π°ΠΊΡΠΈΠ²Π°ΡΠΈΡ Π²ΠΎΠ·Π±ΡΠ΄ΠΈΡΠ΅Π»Ρ Π΄ΠΎΠ·ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΠ° ΠΈ Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠ΅ΡΠ΅Π· 10 ΠΌΠΈΠ½ ΡΠ²Π΅ΡΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΏΡΠΈ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΡΠ²Π΅ΡΠΎΠ²ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ 0,5 ΠΡ.
Polyurethane/<i>n</i>-Octadecane Phase-Change Microcapsules via Emulsion Interfacial Polymerization: The Effect of Paraffin Loading on Capsule Shell Formation and Latent Heat Storage Properties.
Organic phase-change materials (PCMs) hold promise in developing advanced thermoregulation and responsive energy systems owing to their high latent heat capacity and thermal reliability. However, organic PCMs are prone to leakages in the liquid state and, thus, are hardly applicable in their pristine form. Herein, we encapsulated organic PCM n-Octadecane into polyurethane capsules via polymerization of commercially available polymethylene polyphenylene isocyanate and polyethylene glycol at the interface oil-in-water emulsion and studied how various n-Octadecane feeding affected the shell formation, capsule structure, and latent heat storage properties. The successful shell polymerization and encapsulation of n-Octadecane dissolved in the oil core was verified by confocal microscopy and Fourier-transform infrared spectroscopy. The mean capsule size varied from 9.4 to 16.7 Β΅m while the shell was found to reduce in thickness from 460 to 220 nm as the n-Octadecane feeding increased. Conversely, the latent heat storage capacity increased from 50 to 132 J/g corresponding to the growth in actual n-Octadecane content from 25% to 67% as revealed by differential scanning calorimetry. The actual n-Octadecane content increased non-linearly along with the n-Octadecane feeding and reached a plateau at 66-67% corresponded to 3.44-3.69 core-to-monomer ratio. Finally, the capsules with the reasonable combination of structural and thermal properties were evaluated as a thermoregulating additive to a commercially available paint
ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ Π²Π»ΠΈΡΠ½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΡΡ ΠΈ ΡΠΎΡΡΠΎΠ½ΠΎΠ²ΡΡ ΠΊΠΈΡΠ»ΠΎΡ Π½Π° ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΡ ΡΠΎΠ»Π΅ΠΉ ΠΊΠ°Π»ΡΡΠΈΡ ΠΈ ΠΌΠ°Π³Π½ΠΈΡ Π² Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ»ΠΎΠ²ΠΈΡΡ
The influence of water-soluble organic compounds (adipic, polyaspartic and phosphonic acids) and their compositions on the crystallization of calcium and magnesium salts in dynamic conditions has been studied. It is found that the induction period of phase formation increases in the presence of polyaspartic and phosphonic acids 2.3β5.2 times in the range of their content from 0.05 to 0.2 ppm. The results of XRD and electron microscopic studies confirm the change in the phase composition and morphology of the crystalline precipitate that is formed. The dibasic carboxylic acid influence on the induction period, composition and structure of the precipitate is much less. It is established that the composition of organic acids also increases the induction period of phase formation. The complex inhibitor provides an increase in the critical supersaturation level in the system. The phosphonic and carboxyl groups of the inhibitor interact with calcium and magnesium ions and block the crystallization nuclei. When interacting with the dicarboxylic acid and polyacid adsorption on the surface of the formed crystals, the microcrystals dissolve.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π²ΠΎΠ΄ΠΎΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ
ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ (Π°Π΄ΠΈΠΏΠΈΠ½ΠΎΠ²ΠΎΠΉ, ΠΏΠΎΠ»ΠΈΠ°ΡΠΏΠ°ΡΡΠ°ΠΌΠΎΠ²ΠΎΠΉ ΠΈ ΡΠΎΡΡΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡ) ΠΈ ΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΉ Π½Π° ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΡ ΡΠΎΠ»Π΅ΠΉ ΠΊΠ°Π»ΡΡΠΈΡ ΠΈ ΠΌΠ°Π³Π½ΠΈΡ Π² Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π·ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΏΠΎΠ»ΠΈΠ°ΡΠΏΠ°ΡΡΠ°ΠΌΠΎΠ²ΠΎΠΉ ΠΈ ΡΠΎΡΡΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡ Π² 2,3β5,2 ΡΠ°Π·Π° Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΈΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΡ 0,05 Π΄ΠΎ 0,2 ppm. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΠ°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎ-ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΈ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΎΠ±ΡΠ°Π·ΡΡΡΠ΅Π³ΠΎΡΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ°Π΄ΠΊΠ°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π΄Π²ΡΡ
ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ Π½Π° ΠΈΠ½Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄, ΡΠΎΡΡΠ°Π² ΠΈ ΡΡΡΡΠΊΡΡΡΡ ΠΎΡΠ°Π΄ΠΊΠ° Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΌΠ΅Π½ΡΡΠ΅. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΡ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅Ρ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π·ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ. ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠΉ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ²Π½Ρ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅ΡΡΡΠ΅Π½ΠΈΡ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅. Π€ΠΎΡΡΠΎΠ½Π°ΡΠ½ΡΠ΅ ΠΈ ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»ΡΠ½ΡΠ΅ Π³ΡΡΠΏΠΏΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡ Ρ ΠΈΠΎΠ½Π°ΠΌΠΈ ΠΊΠ°Π»ΡΡΠΈΡ ΠΈ ΠΌΠ°Π³Π½ΠΈΡ, Π±Π»ΠΎΠΊΠΈΡΡΡΡ Π·Π°ΡΠΎΠ΄ΡΡΠΈ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ. ΠΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Ρ Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΠΎΠΉ ΠΈ Π°Π΄ΡΠΎΡΠ±ΡΠΈΠ΅ΠΉ ΠΏΠΎΠ»ΠΈΠΊΠΈΡΠ»ΠΎΡΡ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΡΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΎΠ² ΠΌΠΈΠΊΡΠΎΠΊΡΠΈΡΡΠ°Π»Π»Ρ ΡΠ°ΡΡΠ²ΠΎΡΡΡΡΡΡ
ΠΠΠΠ―ΠΠΠ ΠΠΠΠΠ ΠΠΠΠ ΠΠΠΠ£Π§ΠΠΠΠ― ΠΠΠΠΠΠ ΠΠΠΠΠ« 662Β ΠΠ ΠΠ Π ΠΠ‘Π’ MYCOBACTERIUM TUBERCULOSIS INΒ VITRO
Goal of the study: to define the effect of various doses of laser radiation with 662 nm wave on the growth of M. tuberculosis in vitro.Materials and methods. Samples of mycobacterial suspension of M. tuberculosis H37Rv were processed by monopositional light radiation (Ξ» =Β 662Β nm) in six dosing regimens varying in power and duration of the exposure to the light. All samples of mycobacterial suspension of M. tuberculosis were inoculated on the solid nutritional media of Lowenstein-Jensen in triplets for each dose of the exposure to light. Cultures were incubated under 37Β°Π‘ for 90 days with weekly inspection of samples.Results. Continuous irradiation by diffused laser with 662 nm wave provides the most expressed bacteriostatic and bactericidal effects against M.Β tuberculosis H37Rv under the density of the energy dose of 234.5 and 703.5 of J/sq.cm. Such a dose was obtained through 5 and 15-minute exposure respectively.Β Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ in vitro Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π΄ΠΎΠ· Π»Π°Π·Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π΄Π»ΠΈΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ 662 Π½ΠΌ Π½Π° ΡΠΎΡΡΠΎΠ²ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° M.Β tuberculosis.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΠΎΠ±ΡΠ°Π·ΡΡ ΠΌΠΈΠΊΠΎΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π²Π·Π²Π΅ΡΠΈ M. tuberculosis H37Rv ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»ΠΈ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΡΠΌ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠ²Π΅ΡΠΎΠ²ΡΠΌ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ (Ξ» = 662 Π½ΠΌ) Π² ΡΠ΅ΡΡΠΈ ΡΠ΅ΠΆΠΈΠΌΠ°Ρ
Π΄ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, Π·Π°Π²ΠΈΡΡΡΠΈΡ
ΠΎΡ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ²Π΅ΡΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ. ΠΠ½ΠΎΠΊΡΠ»ΡΡΠΈΡ Π²ΡΠ΅Ρ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΡΡΠΏΠ΅Π½Π·ΠΈΠΉ ΠΌΠΈΠΊΠΎΠ±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΡΡΠ±Π΅ΡΠΊΡΠ»Π΅Π·Π° ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»Π°ΡΡ Π½Π° ΠΏΠ»ΠΎΡΠ½ΡΠ΅ ΠΏΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠ΅Π΄Ρ ΠΠ΅Π²Π΅Π½ΡΡΠ΅ΠΉΠ½Π° β ΠΠ΅Π½ΡΠ΅Π½Π° Π² ΡΡΠΈΠΏΠ»Π΅ΡΠ°Ρ
Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΄ΠΎΠ·Ρ ΡΠ²Π΅ΡΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ. ΠΠ½ΠΊΡΠ±Π°ΡΠΈΡ ΠΏΠΎΡΠ΅Π²ΠΎΠ² ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»Π°ΡΡ ΠΏΡΠΈ 37Β°Π‘ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 90 Π΄Π½Π΅ΠΉ Ρ Π΅ΠΆΠ΅Π½Π΅Π΄Π΅Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠ΅ΡΠΌΠΎΡΡΠΎΠΌ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ².Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠ΅ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠ³ΠΎ Π»Π°Π·Π΅ΡΠ° Ρ Π΄Π»ΠΈΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ 662 Π½ΠΌ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠΌΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΈΠ΄Π½ΡΠΌΠΈ ΡΡΡΠ΅ΠΊΡΠ°ΠΌΠΈ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ M. tuberculosis H37Rv ΠΏΡΠΈ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ Π΄ΠΎΠ·Ρ ΡΠ½Π΅ΡΠ³ΠΈΠΈ 234,5 ΠΈ 703,5 ΠΠΆ/ΡΠΌ2 . Π’Π°ΠΊΠ°Ρ Π΄ΠΎΠ·Π° Π±ΡΠ»Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΠΏΡΠΈ 5- ΠΈ 15-ΠΌΠΈΠ½ΡΡΠ½ΠΎΠΉ ΡΠΊΡΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ.
- β¦