96 research outputs found
The electrification of spacecraft
Physical and applied aspects of the electrification of space vehicles and natural celestial objects are discussed, the factors resulting in electrification of spacecraft are analyzed, and methods of investigating various phenomena associated with this electrification and ways of protecting spacecraft against the influence of static electricity are described. The booklet is intended for the general reader interested in present day questions of space technology
The Dipole Magnet Design for the ALICE DiMuon Arm Spectrometer
An essential part of the DiMuon Arm Spectrometer of the ALICE experiment is a conventional Dipole Magnet of about 890 tons which provides the bending power to measure the momenta of muons. The JINR engineering design of the Dipole Magnet, technical characteristics and description of the proposed manufacturing procedure are presented. The proposed Coil fabrication technique is based on winding of flat pancakes, which are subsequently bent on cylindrical mandrels. The pancakes are then stacked and cured with prepreg insulation. The method is demonstrated on hand of the prototype II, which consists of a pancake made with full-size aluminium conductor. Some details of electromagnetic and mechanical calculations are described. The results of measuring of mechanical and electrical characteristics of materials related to the coil composite structure are discussed
Adiabatic description of nonspherical quantum dot models
Within the effective mass approximation an adiabatic description of
spheroidal and dumbbell quantum dot models in the regime of strong dimensional
quantization is presented using the expansion of the wave function in
appropriate sets of single-parameter basis functions. The comparison is given
and the peculiarities are considered for spectral and optical characteristics
of the models with axially symmetric confining potentials depending on their
geometric size making use of the total sets of exact and adiabatic quantum
numbers in appropriate analytic approximations
Recommended from our members
Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sNN= 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μB> 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter
Very high frequency gravitational wave background in the universe
Astrophysical sources of high frequency gravitational radiation are
considered in association with a new interest to very sensitive HFGW receivers
required for the laboratory GW Hertz experiment. A special attention is paid to
the phenomenon of primordial black holes evaporation. They act like black body
to all kinds of radiation, including gravitons, and, therefore, emit an
equilibrium spectrum of gravitons during its evaporation. Limit on the density
of high frequency gravitons in the Universe is obtained, and possibilities of
their detection are briefly discussed.Comment: 14 page
- …