214 research outputs found

    Density-to-potential map in time-independent excited-state density-functional theory

    Full text link
    In light of the recent work by Sahni et al., Harbola, and Gaudoin and Burke, the question of mapping from an excited-state density of a many-electron interacting system to the potential of the related non-interacting system is analyzed. To do so, we investigate the Levy-Nagy criterion quantitatively for several excited-states. Our work indicates that Levy-Nagy criterion may fix the density to potential map uniquely

    Kirzhnits gradient expansion for a D-dimensional Fermi gas

    Full text link
    For an ideal D-dimensional Fermi gas under generic external confinement we derive the correcting coefficient (D2)/3D(D-2)/3D of the von Weizsacker term in the kinetic energy density. To obtain this coefficient we use the Kirzhnits semiclassical expansion of the number operator up to the second order in the Planck constant \hbar. Within this simple and direct approach we determine the differential equation of the density profile and the density functional of the Fermi gas. In the case D=2 we find that the Kirzhnits gradient corrections vanish to all order in \hbar.Comment: 6 pages, 0 figures, accepted for publication in J. Phys. A: Math. Theo

    Simple model of the static exchange-correlation kernel of a uniform electron gas with long-range electron-electron interaction

    Full text link
    A simple approximate expression in real and reciprocal spaces is given for the static exchange-correlation kernel of a uniform electron gas interacting with the long-range part only of the Coulomb interaction. This expression interpolates between the exact asymptotic behaviors of this kernel at small and large wave vectors which in turn requires, among other thing, information from the momentum distribution of the uniform electron gas with the same interaction that have been calculated in the G0W0 approximation. This exchange-correlation kernel as well as its complement analogue associated to the short-range part of the Coulomb interaction are more local than the Coulombic exchange-correlation kernel and constitute potential ingredients in approximations for recent adiabatic connection fluctuation-dissipation and/or density functional theory approaches of the electronic correlation problem based on a separate treatment of long-range and short-range interaction effects.Comment: 14 pages, 14 figures, to be published in Phys. Rev.

    Differential virial theorem in relation to a sum rule for the exchange-correlation force in density-functional theory

    Get PDF
    Holas and March [Phys. Rev. A.51, 2040 (1995)] gave a formally exact theory for the exchange-correlation (xc) forceF xc (r)=−∇υ xc (r) associated with the xc potentialυ xc (r) of the density-functional theory in terms of low-order density matrices. This is shown in the present study to lead, rather directly, to the determination of a sum rule [nFxc]=0 relating the xc force with the ground-state density nr. Some connection is also made with an earlier result relating to the external potential by Levy and Perdew [Phys. Rev. A.32, 2010 (1985)] and with the quite recent study of Joubert [J. Chem. Phys.119, 1916 (2003)] relating to the separation of the exchange and correlation contributions.A.R. was partially supported by the EC Sixth Framework Network of Excellence NANOQUANTA NMP4-CT-2004-500198, the Spanish MCyT, and the Humboldt Foundation under the Bessel research award 2005.Peer Reviewe

    The influence of local field corrections on Thomson scattering in non-ideal two-component plasmas

    Full text link
    Thomson scattering in non-ideal (collision-dominated) two-component plasmas is calculated accounting for electron-ion collisions as well as electron-electron correlations. This is achieved by using a novel interpolation scheme for the electron-electron response function generalizing the traditional Mermin approach. Also, ions are treated as randomly distributed inert scattering centers. The collision frequency is taken as a dynamic and complex quantity and is calculated from a microscopic quantum-statistical approach. Implications due to different approximations for the electron-electron correlation, i.e. different forms of the OCP local field correction, are discussed

    Anti-adiabatic limit of the exchange-correlation kernels of an inhomogeneous electron gas

    Get PDF
    We express the high-frequency (anti-adiabatic) limit of the exchange-correlation kernels of an inhomogeneous electron gas in terms of the following equilibrium properties: the ground-state density, the kinetic stress tensor, the pair-correlation function, and the ground-state exchange-correlation potential. Of these quantities, the first three are amenable to exact evaluation by Quantum Monte Carlo methods, while the last can be obtained from the inversion of the Kohn-Sham equation for the ground-state orbitals. The exact scalar kernel, in this limit, is found to be of very long range in space, at variance with the kernel that is used in the standard local density approximation. The anti-adiabatic xc kernels should be useful in calculations of excitation energies by time-dependent DFT in atoms, molecules, and solids, and provides a solid basis for interpolation between the low- and high-frequency limits of the xc kernels.Comment: 9 pages, 3 figures, to be submitted to PR

    Structure of the Local-field factor of the 2-D electron fluid. Possible evidence for correlated scattering of electron pairs

    Full text link
    The static local-field factor (LFF) of the 2-D electron fluid is calculated {\it nonperturbatively} using a mapping to a classical Coulomb fluid [\lbrackPhys. Rev. Lett., {\bf 87}, 206]\rbrack. The LFF for the paramagnetic fluid {\it differs markedly} from perturbation theory where a maximum near 2kFk_F is expected. Our LFF has a quasi-linear small-k region leading to a maximum close to 3kFk_F, in agreent with currently available quantum Monte Carlo data. The structure in the LFF and its dependence on the density and temperature are interpretted as a signature of correlated scattering of electron pairs of opposite spin.The lack of structure at 2kF2k_F implies weakened Friedel oscillations, Kohn anomalies etc.Comment: 4 pages, 3 figures, version 2 of condmat/0304034, see http://nrcphy1.phy.nrc.ca/ims/qp/chandre/chnc/ Changs in the text, figure 2 and updated reference

    Hartree-Fock method posed as a density-functional theory: Application to the Be atom

    Get PDF
    The Hartree-Fock ground-state energy and electron density are first shown to be derivable from a local one-body effective potential v(r). As a nontrivial example, attention is then focused on the Be atom and isoelectronic atomic ions, the wave functions being written in terms of the density amplitude and phase. Some related general comments on the two-level one-dimensional system are included; kinetic-energy density is shown to be a local functional of electron density generated by the harmonic-oscillator potential

    Scaling in the correlation energies of two-dimensional artificial atoms

    Full text link
    We find an unexpected scaling in the correlation energy of artificial atoms, i.e., harmonically confined two-dimensional quantum dots. The scaling relation is found through extensive numerical examinations including Hartree-Fock, variational quantum Monte Carlo, density-functional, and full configuration-interaction calculations. We show that the correlation energy, i.e., the true ground-state total energy subtracted by the Hartree-Fock total energy, follows a simple function of the Coulomb energy, confimenent strength and, the number of electrons. We find an analytic expression for this function, as well as for the correlation energy per particle and for the ratio between the correlation and total energies. Our tests for independent diffusion Monte Carlo and coupled-cluster results for quantum dots -- including open-shell data -- confirm the generality of the obtained scaling. As the scaling is also well applicable to \gtrsim 100 electrons, our results give interesting prospects for the development of correlation functionals within density-functional theory.Comment: Accepted to Journal of Physics: Condensed Matte

    Polarizational stopping power of heavy-ion diclusters in two-dimensional electron liquids

    Full text link
    The in-plane polarizational stopping power of heavy-ion diclusters in a two-dimensional strongly coupled electron liquid is studied. Analytical expressions for the stopping power of both fast and slow projectiles are derived. To go beyond the random-phase approximation we make use of the inverse dielectric function obtained by means of the method of moments and some recent analytical expressions for the static local-field correction factor.Comment: 9 pages, 5 figures. Published in Physical Review B http://link.aps.org/abstract/PRB/v75/e11510
    corecore