2,542 research outputs found
Search for Sterile Neutrinos with a Radioactive Source at Daya Bay
The far site detector complex of the Daya Bay reactor experiment is proposed
as a location to search for sterile neutrinos with > eV mass. Antineutrinos
from a 500 kCi 144Ce-144Pr beta-decay source (DeltaQ=2.996 MeV) would be
detected by four identical 20-ton antineutrino targets. The site layout allows
flexible source placement; several specific source locations are discussed. In
one year, the 3+1 sterile neutrino hypothesis can be tested at essentially the
full suggested range of the parameters Delta m^2_{new} and sin^22theta_{new}
(90% C.L.). The backgrounds from six nuclear reactors at >1.6 km distance are
shown to be manageable. Advantages of performing the experiment at the Daya Bay
far site are described
Recombination in polymer-fullerene bulk heterojunction solar cells
Recombination of photogenerated charge carriers in polymer bulk
heterojunction (BHJ) solar cells reduces the short circuit current (Jsc) and
the fill factor (FF). Identifying the mechanism of recombination is, therefore,
fundamentally important for increasing the power conversion efficiency. Light
intensity and temperature dependent current-voltage measurements on polymer BHJ
cells made from a variety of different semiconducting polymers and fullerenes
show that the recombination kinetics are voltage dependent and evolve from
first order recombination at short circuit to bimolecular recombination at open
circuit as a result of increasing the voltage-dependent charge carrier density
in the cell. The "missing 0.3V" inferred from comparison of the band gaps of
the bulk heterojunction materials and the measured open circuit voltage at room
temperature results from the temperature dependence of the quasi-Fermi-levels
in the polymer and fullerene domains - a conclusion based upon the fundamental
statistics of Fermions.Comment: Accepted for publication in Physical Review B.
http://prb.aps.org/accepted/B/6b07cO3aHe71bd1b149e1425e58bf2868cda2384d?ajax=1&height=500&width=50
Heavy Fermion Quantum Criticality
During the last few years, investigations of Rare-Earth materials have made
clear that not only the heavy fermion phase in these systems provides
interesting physics, but the quantum criticality where such a phase dies
exhibits novel phase transition physics not fully understood. Moreover,
attempts to study the critical point numerically face the infamous fermion sign
problem, which limits their accuracy. Effective action techniques and
Callan-Symanzik equations have been very popular in high energy physics, where
they enjoy a good record of success. Yet, they have been little exploited for
fermionic systems in condensed matter physics. In this work, we apply the RG
effective action and Callan-Symanzik techiques to the heavy fermion problem. We
write for the first time the effective action describing the low energy physics
of the system. The f-fermions are replaced by a dynamical scalar field whose
nonzero expected value corresponds to the heavy fermion phase. This removes the
fermion sign problem, making the effective action amenable to numerical studies
as the effective theory is bosonic. Renormalization group studies of the
effective action can be performed to extract approximations to nonperturbative
effects at the transition. By performing one-loop renormalizations, resummed
via Callan-Symanzik methods, we describe the heavy fermion criticality and
predict the heavy fermion critical dynamical susceptibility and critical
specific heat. The specific heat coefficient exponent we obtain (0.39) is in
excellent agreement with the experimental result at low temperatures (0.4).Comment: 5 pages. In the replacement, the numerical value for the specific
heat coefficient exponent has been included explicitly in decimal form, and
has been compared with the experimental result
Stripe phases in high-temperature superconductors
Stripe phases are predicted and observed to occur in a class of
strongly-correlated materials describable as doped antiferromagnets, of which
the copper-oxide superconductors are the most prominent representative. The
existence of stripe correlations necessitates the development of new principles
for describing charge transport, and especially superconductivity, in these
materials.Comment: 5 pp, 1 color eps fig., to appear as a Perspective in Proc. Natl.
Acad. Sci. US
The low-temperature energy calibration system for the CUORE bolometer array
The CUORE experiment will search for neutrinoless double beta decay (0nDBD)
of 130Te using an array of 988 TeO_2 bolometers operated at 10 mK in the
Laboratori Nazionali del Gran Sasso (Italy). The detector is housed in a large
cryogen-free cryostat cooled by pulse tubes and a high-power dilution
refrigerator. The TeO_2 bolometers measure the event energies, and a precise
and reliable energy calibration is critical for the successful identification
of candidate 0nDBD and background events. The detector calibration system under
development is based on the insertion of 12 gamma-sources that are able to move
under their own weight through a set of guide tubes that route them from
deployment boxes on the 300K flange down into position in the detector region
inside the cryostat. The CUORE experiment poses stringent requirements on the
maximum heat load on the cryostat, material radiopurity, contamination risk and
the ability to fully retract the sources during normal data taking. Together
with the integration into a unique cryostat, this requires careful design and
unconventional solutions. We present the design, challenges, and expected
performance of this low-temperature energy calibration system.Comment: To be published in the proceedings of the 13th International Workshop
on Low Temperature Detectors (LTD), Stanford, CA, July 20-24, 200
Concentration-dependent mobility in organic field-effect transistors probed by infrared spectromicroscopy of the charge density profile
We show that infrared imaging of the charge density profile in organic
field-effect transistors (FETs) can probe transport characteristics which are
difficult to access by conventional contact-based measurements. Specifically,
we carry out experiments and modeling of infrared spectromicroscopy of
poly(3-hexylthiophene) (P3HT) FETs in which charge injection is affected by a
relatively low resistance of the gate insulators. We conclude that the mobility
of P3HT has a power-law density dependence, which is consistent with the
activated transport in disorder-induced tails of the density of states.Comment: 3+ pages, 2 figure
Ultrafast holography and transient-absorption spectroscopy in charge-transfer polymers
Charge-transfer polymers are a new class of nonlinear optical materials which can be used for generating femtosecond holographic gratings. Using semiconducting polymers sensitized with varying concentrations of C{sub 60}, holographic gratings were recorded by individual ultrafast laser pulses; the diffraction efficiency and time decay of the gratings were measured using non-degenerate four-wave mixing. Using a figure of merit for dynamic data processing, the temporal diffraction efficiency, this new class of materials exhibits between two and 12 orders of magnitude higher response than previous reports. The charge transfer range at polymer/C{sub 60} interfaces was further studied using transient absorption spectroscopy. The fact that charge-transfer occurs in the picosecond-time scale in bilayer structures (thickness 200 {angstrom}) implies that diffusion of localized excitations to the interface is not the dominant mechanism; the charge transfer range is a significant fraction of the film thickness. From analysis of the excited state decay curves, we estimate the charge transfer range to be 80 {angstrom} and interpret that range as resulting from quantum delocalization of the photoexcitations
A Compact Approximate Solution to the Friedel-Anderson Impuriy Problem
An approximate groundstate of the Anderson-Friedel impurity problem is
presented in a very compact form. It requires solely the optimization of two
localized electron states and consists of four Slater states (Slater
determinants). The resulting singlet ground state energy lies far below the
Anderson mean field solution and agrees well with the numerical results by
Gunnarsson and Schoenhammer, who used an extensive 1/N_{f}-expansion for a spin
1/2 impurity with double occupancy of the impurity level.
PACS: 85.20.Hr, 72.15.R
Status of Neutrino Masses and Mixing and Future Perspectives
Status of the problem of neutrino masses, mixing and oscillations is
discussed. Future perspectives are briefly considered.Comment: Report at the conference IRGAC 2006, Barcelona July 11-15 200
Infrared conductivity of hole accumulation and depletion layers in (Ga,Mn)As- and (Ga,Be)As-based electric field-effect devices
We have fabricated electric double-layer field-effect devices to
electrostatically dope our active materials, either =0.015
GaMnAs or =3.2 GaBeAs. The devices
are tailored for interrogation of electric field induced changes to the
frequency dependent conductivity in the accumulation or depletions layers of
the active material via infrared (IR) spectroscopy. The spectra of the
(Ga,Be)As-based device reveal electric field induced changes to the IR
conductivity consistent with an enhancement or reduction of the Drude response
in the accumulation and depletion polarities, respectively. The spectroscopic
features of this device are all indicative of metallic conduction within the
GaAs host valence band (VB). For the (Ga,Mn)As-based device, the spectra show
enhancement of the far-IR itinerant carrier response and broad mid-IR resonance
upon hole accumulation, with a decrease of these features in the depletion
polarity. These later spectral features demonstrate that conduction in
ferromagnetic (FM) GaMnAs is distinct from genuine metallic
behavior due to extended states in the host VB. Furthermore, these data support
the notion that a Mn-induced impurity band plays a vital role in the electron
dynamics of FM GaMnAs. We add, a sum-rule analysis of the spectra
of our devices suggests that the Mn or Be doping does not lead to a substantial
renormalization of the GaAs host VB
- …