4,847 research outputs found
Precision Measurements of Stretching and Compression in Fluid Mixing
The mixing of an impurity into a flowing fluid is an important process in
many areas of science, including geophysical processes, chemical reactors, and
microfluidic devices. In some cases, for example periodic flows, the concepts
of nonlinear dynamics provide a deep theoretical basis for understanding
mixing. Unfortunately, the building blocks of this theory, i.e. the fixed
points and invariant manifolds of the associated Poincare map, have remained
inaccessible to direct experimental study, thus limiting the insight that could
be obtained. Using precision measurements of tracer particle trajectories in a
two-dimensional fluid flow producing chaotic mixing, we directly measure the
time-dependent stretching and compression fields. These quantities, previously
available only numerically, attain local maxima along lines coinciding with the
stable and unstable manifolds, thus revealing the dynamical structures that
control mixing. Contours or level sets of a passive impurity field are found to
be aligned parallel to the lines of large compression (unstable manifolds) at
each instant. This connection appears to persist as the onset of turbulence is
approached.Comment: 5 pages, 5 figure
Severe Respiratory Insufficiency Complicating Epstein-Barr Virus Infection: Case Report and Review
We report a case involving a young adult who had life-threatening bilateral pneumonitis in the course of an acute Epstein-Barr virus (EBV) infection. Because of severe hypoxemia, the patient required mechanical ventilation and additional oxygenation by an intravascular oxygenator. The patient was treated with corticosteroids and survived without sequelae. Severe pulmonary involvement associated with EBV infection is a rare but potentially fatal complication of infectious mononucleosis. Similar cases reported in the literature are reviewed, and the therapeutic options for this particular complication are discusse
A configuration system for the ATLAS trigger
The ATLAS detector at CERN's Large Hadron Collider will be exposed to
proton-proton collisions from beams crossing at 40 MHz that have to be reduced
to the few 100 Hz allowed by the storage systems. A three-level trigger system
has been designed to achieve this goal. We describe the configuration system
under construction for the ATLAS trigger chain. It provides the trigger system
with all the parameters required for decision taking and to record its history.
The same system configures the event reconstruction, Monte Carlo simulation and
data analysis, and provides tools for accessing and manipulating the
configuration data in all contexts.Comment: 4 pages, 2 figures, contribution to the Conference on Computing in
High Energy and Nuclear Physics (CHEP06), 13.-17. Feb 2006, Mumbai, Indi
Detecting barriers to transport: A review of different techniques
We review and discuss some different techniques for describing local
dispersion properties in fluids. A recent Lagrangian diagnostics, based on the
Finite Scale Lyapunov Exponent (FSLE), is presented and compared to the Finite
Time Lyapunov Exponent (FTLE), and to the Okubo-Weiss (OW) and Hua-Klein (HK)
criteria. We show that the OW and HK are a limiting case of the FTLE, and that
the FSLE is the most efficient method for detecting the presence of
cross-stream barriers. We illustrate our findings by considering two examples
of geophysical interest: a kinematic meandering jet model, and Lagrangian
tracers advected by stratospheric circulation.Comment: 15 pages, 9 figures, submitted to Physica
Integrated Circuit Design in US High-Energy Physics
This whitepaper summarizes the status, plans, and challenges in the area of
integrated circuit design in the United States for future High Energy Physics
(HEP) experiments. It has been submitted to CPAD (Coordinating Panel for
Advanced Detectors) and the HEP Community Summer Study 2013(Snowmass on the
Mississippi) held in Minnesota July 29 to August 6, 2013. A workshop titled: US
Workshop on IC Design for High Energy Physics, HEPIC2013 was held May 30 to
June 1, 2013 at Lawrence Berkeley National Laboratory (LBNL). A draft of the
whitepaper was distributed to the attendees before the workshop, the content
was discussed at the meeting, and this document is the resulting final product.
The scope of the whitepaper includes the following topics: Needs for IC
technologies to enable future experiments in the three HEP frontiers Energy,
Cosmic and Intensity Frontiers; Challenges in the different technology and
circuit design areas and the related R&D needs; Motivation for using different
fabrication technologies; Outlook of future technologies including 2.5D and 3D;
Survey of ICs used in current experiments and ICs targeted for approved or
proposed experiments; IC design at US institutes and recommendations for
collaboration in the future
Continuation-Passing C: compiling threads to events through continuations
In this paper, we introduce Continuation Passing C (CPC), a programming
language for concurrent systems in which native and cooperative threads are
unified and presented to the programmer as a single abstraction. The CPC
compiler uses a compilation technique, based on the CPS transform, that yields
efficient code and an extremely lightweight representation for contexts. We
provide a proof of the correctness of our compilation scheme. We show in
particular that lambda-lifting, a common compilation technique for functional
languages, is also correct in an imperative language like C, under some
conditions enforced by the CPC compiler. The current CPC compiler is mature
enough to write substantial programs such as Hekate, a highly concurrent
BitTorrent seeder. Our benchmark results show that CPC is as efficient, while
using significantly less space, as the most efficient thread libraries
available.Comment: Higher-Order and Symbolic Computation (2012). arXiv admin note:
substantial text overlap with arXiv:1202.324
Calibration and performance of the photon sensor response of FACT -- The First G-APD Cherenkov telescope
The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of
the performance of silicon photo detectors in Cherenkov Astronomy. For more
than two years it is operated on La Palma, Canary Islands (Spain), for the
purpose of long-term monitoring of astrophysical sources. For this, the
performance of the photo detectors is crucial and therefore has been studied in
great detail. Special care has been taken for their temperature and voltage
dependence implementing a correction method to keep their properties stable.
Several measurements have been carried out to monitor the performance. The
measurements and their results are shown, demonstrating the stability of the
gain below the percent level. The resulting stability of the whole system is
discussed, nicely demonstrating that silicon photo detectors are perfectly
suited for the usage in Cherenkov telescopes, especially for long-term
monitoring purpose
FACT -- Operation of the First G-APD Cherenkov Telescope
Since more than two years, the First G-APD Cherenkov Telescope (FACT) is
operating successfully at the Canary Island of La Palma. Apart from its purpose
to serve as a monitoring facility for the brightest TeV blazars, it was built
as a major step to establish solid state photon counters as detectors in
Cherenkov astronomy.
The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode
avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since
properties as the gain of G-APDs depend on temperature and the applied voltage,
a real-time feedback system has been developed and implemented. To correct for
the change introduced by temperature, several sensors have been placed close to
the photon detectors. Their read out is used to calculate a corresponding
voltage offset. In addition to temperature changes, changing current introduces
a voltage drop in the supporting resistor network. To correct changes in the
voltage drop introduced by varying photon flux from the night-sky background,
the current is measured and the voltage drop calculated. To check the stability
of the G-APD properties, dark count spectra with high statistics have been
taken under different environmental conditions and been evaluated.
The maximum data rate delivered by the camera is about 240 MB/s. The recorded
data, which can exceed 1 TB in a moonless night, is compressed in real-time
with a proprietary loss-less algorithm. The performance is better than gzip by
almost a factor of two in compression ratio and speed. In total, two to three
CPU cores are needed for data taking. In parallel, a quick-look analysis of the
recently recorded data is executed on a second machine. Its result is publicly
available within a few minutes after the data were taken.
[...]Comment: 19th IEEE Real-Time Conference, Nara, Japan (2014
FACT -- The G-APD revolution in Cherenkov astronomy
Since two years, the FACT telescope is operating on the Canary Island of La
Palma. Apart from its purpose to serve as a monitoring facility for the
brightest TeV blazars, it was built as a major step to establish solid state
photon counters as detectors in Cherenkov astronomy. The camera of the First
G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes
(G-APD), equipped with solid light guides to increase the effective light
collection area of each sensor. Since no sense-line is available, a special
challenge is to keep the applied voltage stable although the current drawn by
the G-APD depends on the flux of night-sky background photons significantly
varying with ambient light conditions. Methods have been developed to keep the
temperature and voltage dependent response of the G-APDs stable during
operation. As a cross-check, dark count spectra with high statistics have been
taken under different environmental conditions. In this presentation, the
project, the developed methods and the experience from two years of operation
of the first G-APD based camera in Cherenkov astronomy under changing
environmental conditions will be presented.Comment: Proceedings of the Nuclear Science Symposium and Medical Imaging
Conference (IEEE-NSS/MIC), 201
Electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with nuclei
We review and summarize recent theoretical and experimental work on electron
spin dynamics in quantum dots and related nanostructures due to hyperfine
interaction with surrounding nuclear spins. This topic is of particular
interest with respect to several proposals for quantum information processing
in solid state systems. Specifically, we investigate the hyperfine interaction
of an electron spin confined in a quantum dot in an s-type conduction band with
the nuclear spins in the dot. This interaction is proportional to the square
modulus of the electron wave function at the location of each nucleus leading
to an inhomogeneous coupling, i.e. nuclei in different locations are coupled
with different strength. In the case of an initially fully polarized nuclear
spin system an exact analytical solution for the spin dynamics can be found.
For not completely polarized nuclei, approximation-free results can only be
obtained numerically in sufficiently small systems. We compare these exact
results with findings from several approximation strategies.Comment: 26 pages, 9 figures. Topical Review to appear in J. Phys.: Condens.
Matte
- …