1,118 research outputs found

    A tunable radiation source by coupling laser-plasma-generated electrons to a periodic structure

    Get PDF
    Near-infrared radiation around 1000 nm generated from the interaction of a high-density MeV electron beam, obtained by impinging an intense ultrashort laser pulse on a solid target, with a metal grating is observed experimentally. Theoretical modeling and particle-in-cell simulation suggest that the radiation is caused by the Smith-Purcell mechanism. The results here indicate that tunable terahertz radiation with tens GV=m field strength can be achieved by using appropriate grating parameter

    Lattice Study of the Massive Schwinger Model with a θ\theta term under L\"uscher's "Admissibility" condition

    Get PDF
    We present a numerical study of the massive two-flavor QED in two dimensions with the gauge action proposed by L\"uscher, which allows only ``admissible'' gauge fields. We find that the admissibility condition does not allow any topology changes by the local updation in Hybrid Monte Carlo algorithm so that the configurations in each topological sector can be generated separately. By developing a new method to sum over different topological sectors, we investigate θ\theta vacuum effects. Combining with domain-wall fermion action, we obtain the fermion mass dependence and θ\theta dependence of the meson masses, which are consistent with the analytic results by mass perturbation in the continuum theory.Comment: 3 pages, Lattice2003(chiral

    Random Exchange Disorder in the Spin-1/2 XXZ Chain

    Full text link
    The one-dimensional XXZ model is studied in the presence of disorder in the Heisenberg Exchange Integral. Recent predictions obtained from renormalization group calculations are investigated numerically using a Lanczos algorithm on chains of up to 18 sites. It is found that in the presence of strong X-Y-symmetric random exchange couplings, a ``random singlet'' phase with quasi-long-range order in the spin-spin correlations persists. As the planar anisotropy is varied, the full zero-temperature phase diagram is obtained and compared with predictions of Doty and Fisher [Phys. Rev. B {\bf 45 }, 2167 (1992)].Comment: 9 pages + 8 plots appended, RevTex, FSU-SCRI-93-98 and ORNL/CCIP/93/1

    Fluctuations of the Retarded Van der Waals Force

    Get PDF
    The retarded Van der Waals force between a polarizable particle and a perfectly conducting plate is re-examined. The expression for this force given by Casimir and Polder represents a mean force, but there are large fluctuations around this mean value on short time scales which are of the same order of magnitude as the mean force itself. However, these fluctuations occur on time scales which are typically of the order of the light travel time between the atom and the plate. As a consequence, they will not be observed in an experiment which measures the force averaged over a much longer time. In the large time limit, the magnitude of the mean squared velocity of a test particle due to this fluctuating Van der Waals force approaches a constant, and is similar to a Brownian motion of a test particle in an thermal bath with an effective temperature. However the fluctuations are not isotropic in this case, and the shift in the mean square velocity components can even be negative. We interpret this negative shift to correspond to a reduction in the velocity spread of a wavepacket. The force fluctuations discussed in this paper are special case of the more general problem of stress tensor fluctuations. These are of interest in a variety of areas fo physics, including gravity theory. Thus the effects of Van der Waals force fluctuations serve as a useful model for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure

    A Lattice Study of the Nucleon Excited States with Domain Wall Fermions

    Get PDF
    We present results of our numerical calculation of the mass spectrum for isospin one-half and spin one-half non-strange baryons, i.e. the ground and excited states of the nucleon, in quenched lattice QCD. We use a new lattice discretization scheme for fermions, domain wall fermions, which possess almost exact chiral symmetry at non-zero lattice spacing. We make a systematic investigation of the negative-parity NN^* spectrum by using two distinct interpolating operators at β=6/g2=6.0\beta=6/g^2=6.0 on a 163×32×1616^3 \times 32 \times 16 lattice. The mass estimates extracted from the two operators are consistent with each other. The observed large mass splitting between this state, N(1535)N^*(1535), and the positive-parity ground state, the nucleon N(939), is well reproduced by our calculations. We have also calculated the mass of the first positive-parity excited state and found that it is heavier than the negative-parity excited state for the quark masses studied.Comment: 46 pages, REVTeX, 11 figures included, revised version accepted for publication in Phys. Rev.

    Constraints on coupling constant between dark energy and dark matter

    Full text link
    We have investigated constraints on the coupling between dark matter and the interacting Chaplygin gas. Our results indicate that the coupling constant cc between these two entities can take arbitrary values, which can be either positive or negative, thus giving arbitrary freedom to the inter-conversion between Chaplygin gas and dark matter. Thus our results indicate that the restriction 0<c<10<c<1 on the coupling constant occurs as a very special case. Our analysis also supports the existence of phantom energy under certain conditions on the coupling constant.Comment: 16 Pages, 3 figure

    Extracting Br(omega->pi^+ pi^-) from the Time-like Pion Form-factor

    Full text link
    We extract the G-parity-violating branching ratio Br(omega->pi^+ pi^-) from the effective rho-omega mixing matrix element Pi_{rho omega}(s), determined from e^+e^- -> pi^+ pi^- data. The omega->pi^+ pi^- partial width can be determined either from the time-like pion form factor or through the constraint that the mixed physical propagator D_{rho omega}^{mu nu}(s) possesses no poles. The two procedures are inequivalent in practice, and we show why the first is preferred, to find finally Br(omega->pi^+ pi^-) = 1.9 +/- 0.3%.Comment: 12 pages (published version

    Interacting Modified Variable Chaplygin Gas in Non-flat Universe

    Full text link
    A unified model of dark energy and matter is presented using the modified variable Chaplygin gas for interacting dark energy in a non-flat universe. The two entities interact with each other non-gravitationally which involves a coupling constant. Due to dynamic interaction, the variation in this constant arises that henceforth changes the equations of state of these quantities. We have derived the effective equations of state corresponding to matter and dark energy in this interacting model. Moreover, the case of phantom energy is deduced by putting constraints on the parameters involved.Comment: 9 pages; Accepted for publication in European Physical Journal
    corecore