3,870 research outputs found
Local impurity effects in superconducting graphene
We study the effect of impurities in superconducting graphene and discuss
their influence on the local electronic properties. In particular, we consider
the case of magnetic and non-magnetic impurities being either strongly
localized or acting as a potential averaged over one unit cell. The spin
dependent local density of states is calculated and possibilities for
visualizing impurities by means of scanning tunneling experiments is pointed
out. A possibility of identifying magnetic scatters even by non spin-polarized
scanning tunneling spectroscopy is explained.Comment: 4 pages, 4 figure
Decoupling method for dynamical mean field theory calculations
In this paper we explore the use of an equation of motion decoupling method
as an impurity solver to be used in conjunction with the dynamical mean field
self-consistency condition for the solution of lattice models. We benchmark the
impurity solver against exact diagonalization, and apply the method to study
the infinite Hubbard model, the periodic Anderson model and the model.
This simple and numerically efficient approach yields the spectra expected for
strongly correlated materials, with a quasiparticle peak and a Hubbard band. It
works in a large range of parameters, and therefore can be used for the
exploration of real materials using LDA+DMFT.Comment: 30 pages, 7 figure
Multiple scattering formalism for correlated systems: A KKR+DMFT approach
We present a charge and self-energy self-consistent computational scheme for
correlated systems based on the Korringa-Kohn-Rostoker (KKR) multiple
scattering theory with the many-body effects described by the means of
dynamical mean field theory (DMFT). The corresponding local multi-orbital and
energy dependent self-energy is included into the set of radial differential
equations for the single-site wave functions. The KKR Green's function is
written in terms of the multiple scattering path operator, the later one being
evaluated using the single-site solution for the -matrix that in turn is
determined by the wave functions. An appealing feature of this approach is that
it allows to consider local quantum and disorder fluctuations on the same
footing. Within the Coherent Potential Approximation (CPA) the correlated atoms
are placed into a combined effective medium determined by the dynamical mean
field theory (DMFT) self-consistency condition. Results of corresponding
calculations for pure Fe, Ni and FeNi alloys are presented.Comment: 25 pages, 5 fig. acepted PR
On the mechanism for orbital-ordering in KCuF3
The Mott insulating perovskite KCuF3 is considered the archetype of an
orbitally-ordered system. By using the LDA+dynamical mean-field theory (DMFT)
method, we investigate the mechanism for orbital-ordering (OO) in this
material. We show that the purely electronic Kugel-Khomskii super-exchange
mechanism (KK) alone leads to a remarkably large transition temperature of T_KK
about 350 K. However, orbital-order is experimentally believed to persist to at
least 800 K. Thus Jahn-Teller distortions are essential for stabilizing
orbital-order at such high temperatures.Comment: 4 pages, 5 figure
Half-Metallic Ferromagnetism and the spin polarization in CrO
We present electronic structure calculations in combination with local and
non-local many-body correlation effects for the half-metallic ferromagnet
CrO. Finite-temperature Dynamical Mean Field Theory results show the
existence of non-quasiparticle states, which were recently observed as almost
currentless minority spin states near the Fermi energy in resonant scattering
experients. At zero temperatures, Variational Cluster Approach calculations
support the half-metallic nature of CrO as seen in superconducting point
contact spectroscopy. The combination of these two techniques allowed us to
qualitatively describe the spin-polarization in CrO.Comment: 5 pages, 3 figure
Half-metallicity in NiMnSb: a Variational Cluster Approach with ab-initio parameters
Electron correlation effects in the half-metallic ferromagnet NiMnSb are
investigated within a combined density functional and many-body approach.
Starting from a realistic multi-orbital Hubbard-model including Mn and Ni-d
orbitals, the many-body problem is addressed via the Variational Cluster
Approach. The density of states obtained in the calculation shows a strong
spectral weight transfer towards the Fermi level in the occupied conducting
majority spin channel with respect to the uncorrelated case, as well as states
with vanishing quasiparticle weight in the minority spin gap. Although the two
features produce competing effects, the overall outcome is a strong reduction
of the spin polarisation at the Fermi level with respect to the uncorrelated
case. This result emphasizes the importance of correlation in this material.Comment: 8 pages, 6 figure
Superperturbation solver for quantum impurity models
We present a very efficient solver for the general Anderson impurity problem.
It is based on the perturbation around a solution obtained from exact
diagonalization using a small number of bath sites. We formulate a perturbation
theory which is valid for both weak and strong coupling and interpolates
between these limits. Good agreement with numerically exact quantum Monte-Carlo
results is found for a single bath site over a wide range of parameters. In
particular, the Kondo resonance in the intermediate coupling regime is well
reproduced for a single bath site and the lowest order correction. The method
is particularly suited for low temperatures and alleviates analytical
continuation of imaginary time data due to the absence of statistical noise
compared to quantum Monte-Carlo impurity solvers.Comment: 6 pages, 5 figure
Plasmons in strongly correlated systems: spectral weight transfer and renormalized dispersion
We study the charge-density dynamics within the two-dimensional extended
Hubbard model in the presence of long-range Coulomb interaction across the
metal-insulator transition point. To take into account strong correlations we
start from self-consistent extended dynamical mean-field theory and include
non-local dynamical vertex corrections through a ladder approximation to the
polarization operator. This is necessary to fulfill charge conservation and to
describe plasmons in the correlated state. The calculated plasmon spectra are
qualitatively different from those in the random-phase approximation: they
exhibit a spectral density transfer and a renormalized dispersion with enhanced
deviation from the canonical -behavior. Both features are reminiscent
of interaction induced changes found in single-electron spectra of strongly
correlated systems.Comment: 5 pages, 5 figures + appendix (3 pages, 1 figure
Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory
Strong electronic correlations pose one of the biggest challenges to solid
state theory. We review recently developed methods that address this problem by
starting with the local, eminently important correlations of dynamical mean
field theory (DMFT). On top of this, non-local correlations on all length
scales are generated through Feynman diagrams, with a local two-particle vertex
instead of the bare Coulomb interaction as a building block. With these
diagrammatic extensions of DMFT long-range charge-, magnetic-, and
superconducting fluctuations as well as (quantum) criticality can be addressed
in strongly correlated electron systems. We provide an overview of the
successes and results achieved---hitherto mainly for model Hamiltonians---and
outline future prospects for realistic material calculations.Comment: 60 pages, 42 figures, replaced by the version to be published in Rev.
Mod. Phys. 201
- …