230 research outputs found

    Photoemission Electron Microscopy as a tool for the investigation of optical near fields

    Full text link
    Photoemission electron microscopy was used to image the electrons photoemitted from specially tailored Ag nanoparticles deposited on a Si substrate (with its native oxide SiOx_{x}). Photoemission was induced by illumination with a Hg UV-lamp (photon energy cutoff ℏωUV=5.0\hbar\omega_{UV}=5.0 eV, wavelength λUV=250\lambda_{UV}=250 nm) and with a Ti:Sapphire femtosecond laser (ℏωl=3.1\hbar\omega_{l}=3.1 eV, λl=400\lambda_{l}=400 nm, pulse width below 200 fs), respectively. While homogeneous photoelectron emission from the metal is observed upon illumination at energies above the silver plasmon frequency, at lower photon energies the emission is localized at tips of the structure. This is interpreted as a signature of the local electrical field therefore providing a tool to map the optical near field with the resolution of emission electron microscopy.Comment: 10 pages, 4 figures; submitted to Physical Review Letter

    Muonic hydrogen cascade time and lifetime of the short-lived 2S2S state

    Get PDF
    Metastable 2S{2S} muonic-hydrogen atoms undergo collisional 2S{2S}-quenching, with rates which depend strongly on whether the ÎŒp\mu p kinetic energy is above or below the 2S→2P{2S}\to {2P} energy threshold. Above threshold, collisional 2S→2P{2S} \to {2P} excitation followed by fast radiative 2P→1S{2P} \to {1S} deexcitation is allowed. The corresponding short-lived ÎŒp(2S)\mu p ({2S}) component was measured at 0.6 hPa H2\mathrm{H}_2 room temperature gas pressure, with lifetime τ2Sshort=165−29+38\tau_{2S}^\mathrm{short} = 165 ^{+38}_{-29} ns (i.e., λ2Squench=7.9−1.6+1.8×1012s−1\lambda_{2S}^\mathrm{quench} = 7.9 ^{+1.8}_{-1.6} \times 10^{12} \mathrm{s}^{-1} at liquid-hydrogen density) and population Ï”2Sshort=1.70−0.56+0.80\epsilon_{2S}^\mathrm{short} = 1.70^{+0.80}_{-0.56} % (per ÎŒp\mu p atom). In addition, a value of the ÎŒp\mu p cascade time, TcasÎŒp=(37±5)T_\mathrm{cas}^{\mu p} = (37\pm5) ns, was found.Comment: 4 pages, 3 figure

    Near-field optical power transmission of dipole nano-antennas

    Get PDF
    Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna. To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nanoantennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nanoantenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light

    Feasibility of Coherent xuv Spectroscopy on the 1S-2S Transition in Singly Ionized Helium

    Get PDF
    The 1S-2S two-photon transition in singly ionized helium is a highly interesting candidate for precision tests of bound-state quantum electrodynamics (QED). With the recent advent of extreme ultraviolet frequency combs, highly coherent quasi-continuous-wave light sources at 61 nm have become available, and precision spectroscopy of this transition now comes into reach for the first time. We discuss quantitatively the feasibility of such an experiment by analyzing excitation and ionization rates, propose an experimental scheme, and explore the potential for QED tests

    X-ray emission during the muonic cascade in hydrogen

    Get PDF
    We report our investigations of X rays emitted during the muonic cascade in hydrogen employing charge coupled devices as X-ray detectors. The density dependence of the relative X-ray yields for the muonic hydrogen lines (K_alpha, K_beta, K_gamma) has been measured at densities between 0.00115 and 0.97 of liquid hydrogen density. In this density region collisional processes dominate the cascade down to low energy levels. A comparison with recent calculations is given in order to demonstrate the influence of Coulomb deexcitation.Comment: 5 pages, Tex, 4 figures, submitted to Physical Review Letter

    Hyperfine Structure of S-States in Muonic Helium Ion

    Full text link
    Corrections of orders alpha^5 and alpha^6 are calculated in the hyperfine splittings of 1S and 2S - energy levels in the ion of muonic helium. The electron vacuum polarization effects, the nuclear structure corrections and recoil corrections are taken into account. The obtained numerical values of the hyperfine splittings -1334.56 meV (1S state), -166.62 meV (2S state) can be considered as a reliable estimate for the comparison with the future experimental data. The hyperfine splitting interval Delta_{12}=(8 Delta E^{hfs}(2S)- Delta E^{hfs}(1S)) = 1.64 meV can be used for the check of quantum electrodynamics.Comment: 14 pages, 5 figure

    Plasmonic nanoparticle monomers and dimers: From nano-antennas to chiral metamaterials

    Full text link
    We review the basic physics behind light interaction with plasmonic nanoparticles. The theoretical foundations of light scattering on one metallic particle (a plasmonic monomer) and two interacting particles (a plasmonic dimer) are systematically investigated. Expressions for effective particle susceptibility (polarizability) are derived, and applications of these results to plasmonic nanoantennas are outlined. In the long-wavelength limit, the effective macroscopic parameters of an array of plasmonic dimers are calculated. These parameters are attributable to an effective medium corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial where plasmonic monomers or dimers have the function of "meta-atoms". It is shown that planar dimers consisting of rod-like particles generally possess elliptical dichroism and function as atoms for planar chiral metamaterials. The fabricational simplicity of the proposed rod-dimer geometry can be used in the design of more cost-effective chiral metamaterials in the optical domain.Comment: submitted to Appl. Phys.

    Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array

    Get PDF
    W. Andrew Murray, Simion Astilean, and William L. Barnes, Physical Review B, Vol. 69, article 165407 (2004). "Copyright © 2004 by the American Physical Society."We present results of experiments to determine the dispersion of the plasmon modes associated with periodic silver nanoparticle and nanohole arrays fabricated using an extension of the nanosphere lithography technique. Ordered monolayers of polystyrene nanospheres were used as a deposition mask through which silver was deposited by thermal evaporation, subsequent removal of the nanospheres thus leaving an array of metallic nanoparticles. By reactive-ion etching of the nanospheres in an oxygen plasma prior to silver deposition, arrays consisting of particles of increasing size were fabricated. The extremities of the particles eventually merge to create a continuous metallic network perforated by subwavelength holes, thus allowing a study of the particle-hole transition. Combining optical measurements of transmittance and reflectance with information gained using scanning electron microscopy, three separate regimes were observed. For low etch times the samples comprise mainly individual nanoparticles and the optical response is dominated by localized surface plasmon resonances that show no dispersion. As the etch time is increased almost all of the nanoparticles merge with adjacent particles, although many defects are present—notably where some particles fail to merge, a small gap being left between them. The presence of these defects prevents an abrupt structural transition from metallic nanoparticles to a continuous metallic film perforated by an array of nanoholes. The presence of such gaps also results in dispersion data that lack clearly defined features. A further increase in etch time leads to samples with no gaps: instead, a continuous metal film perforated by a nanohole array is produced. The optical response of these structures is dominated by extended surface plasmon-polariton modes
    • 

    corecore