2,923 research outputs found

    Spin-mediated dissipation and frequency shifts of a cantilever at milliKelvin temperatures

    Get PDF
    We measure the dissipation and frequency shift of a magnetically coupled cantilever in the vicinity of a silicon chip, down to 2525 mK. The dissipation and frequency shift originates from the interaction with the unpaired electrons, associated with the dangling bonds in the native oxide layer of the silicon, which form a two dimensional system of electron spins. We approach the sample with a 3.433.43 μ\mum-diameter magnetic particle attached to an ultrasoft cantilever, and measure the frequency shift and quality factor as a function of temperature and the distance. Using a recent theoretical analysis [J. M. de Voogd et al., arXiv:1508.07972 (2015)] of the dynamics of a system consisting of a spin and a magnetic resonator, we are able to fit the data and extract the relaxation time T1=0.39±0.08T_1=0.39\pm0.08 ms and spin density σ=0.14±0.01\sigma=0.14\pm0.01 spins per nm2^2. Our analysis shows that at temperatures ≤500\leq500 mK magnetic dissipation is an important source of non-contact friction.Comment: 5 pages, 3 figure

    Finite temperature molecular dynamics study of unstable stacking fault free energies in silicon

    Full text link
    We calculate the free energies of unstable stacking fault (USF) configurations on the glide and shuffle slip planes in silicon as a function of temperature, using the recently developed Environment Dependent Interatomic Potential (EDIP). We employ the molecular dynamics (MD) adiabatic switching method with appropriate periodic boundary conditions and restrictions to atomic motion that guarantee stability and include volume relaxation of the USF configurations perpendicular to the slip plane. Our MD results using the EDIP model agree fairly well with earlier first-principles estimates for the transition from shuffle to glide plane dominance as a function of temperature. We use these results to make contact to brittle-ductile transition models.Comment: 6 pages revtex, 4 figs, 16 refs, to appear in Phys. Rev.

    Population-based mammography screening below age 50: balancing radiation-induced vs prevented breast cancer deaths

    Get PDF
    Introduction:Exposure to ionizing radiation at mammography screening may cause breast cancer. Because the radiation risk increases with lower exposure age, advancing the lower age limit may affect the balance between screening benefits and risks. The present study explores the benefit-risk ratio of screening before age 50.Methods:The benefits of biennial mammography screening, starting at various ages between 40 and 50, and continuing up to age 74 were examined using micro-simulation. In contrast with previous studies that commonly used excess relative risk models, we assessed the radiation risks using the latest BEIR-VII excess abso

    Fast-Neutron Activation of Long-Lived Isotopes in Enriched Ge

    Full text link
    We measured the production of \nuc{57}{Co}, \nuc{54}{Mn}, \nuc{68}{Ge}, \nuc{65}{Zn}, and \nuc{60}{Co} in a sample of Ge enriched in isotope 76 due to high-energy neutron interactions. These isotopes, especially \nuc{68}{Ge}, are critical in understanding background in Ge detectors used for double-beta decay experiments. They are produced by cosmogenic-neutron interactions in the detectors while they reside on the Earth's surface. These production rates were measured at neutron energies of a few hundred MeV. We compared the measured production to that predicted by cross-section calculations based on CEM03.02. The cross section calculations over-predict our measurements by approximately a factor of three depending on isotope. We then use the measured cosmic-ray neutron flux, our measurements, and the CEM03.02 cross sections to predict the cosmogenic production rate of these isotopes. The uncertainty in extrapolating the cross section model to higher energies dominates the total uncertainty in the cosmogenic production rate.Comment: Revised after feedback and further work on extrapolating cross sections to higher energies in order to estimate cosmic production rates. Also a numerical error was found and fixed in the estimate of the Co-57 production rat

    How to detect late-onset inborn errors of metabolism in patients with movement disorders - A modern diagnostic approach

    Get PDF
    We propose a modern approach to assist clinicians to recognize and diagnose inborn errors of metabolism (IEMs) in adolescents and adults that present with a movement disorder. IEMs presenting in adults are still largely unexplored. These disorders receive little attention in neurological training and daily practice, and are considered complicated by many neurologists. Adult-onset presentations of IEMs differ from childhood-onset phenotypes, which may lead to considerable diagnostic delay. The identification of adult-onset phenotypes at the earliest stage of the disease is important, since early treatment may prevent or lessen further brain damage. Our approach is based on a systematic review of all papers that concerned movement disorders due to an IEM in patients of 16 years or older. Detailed clinical phenotyping is the diagnostic cornerstone of the approach. An underlying IEM should be suspected in particular in patients with more than one movement disorder, or in patients with additional neurological, psychiatric, or systemic manifestations. As IEMs are all genetic disorders, we recommend next-generation sequencing (NGS) as the first diagnostic approach to confirm an IEM. Biochemical tests remain the first choice in acute-onset or treatable IEMs that require rapid diagnosis, or to confirm the metabolic diagnosis after NGS results. With the use of careful and systematic clinical phenotyping combined with novel diagnostic approaches such as NGS, the diagnostic yield of late-onset IEMs will increase, in particular in patients with mild or unusual phenotypes.</p
    • …
    corecore