10,217 research outputs found
Riemann zeros, prime numbers and fractal potentials
Using two distinct inversion techniques, the local one-dimensional potentials
for the Riemann zeros and prime number sequence are reconstructed. We establish
that both inversion techniques, when applied to the same set of levels, lead to
the same fractal potential. This provides numerical evidence that the potential
obtained by inversion of a set of energy levels is unique in one-dimension. We
also investigate the fractal properties of the reconstructed potentials and
estimate the fractal dimensions to be for the Riemann zeros and for the prime numbers. This result is somewhat surprising since the
nearest-neighbour spacings of the Riemann zeros are known to be chaotically
distributed whereas the primes obey almost poisson-like statistics. Our
findings show that the fractal dimension is dependent on both the
level-statistics and spectral rigidity, , of the energy levels.Comment: Five postscript figures included in the text. To appear in Phys. Rev.
Morphine activates neuroinflammation in a manner parallel to endotoxin
Opioids create a neuroinflammatory response within the CNS, compromising opioid-induced analgesia and contributing to various unwanted actions. How this occurs is unknown but has been assumed to be via classic opioid receptors. Herein, we provide direct evidence that morphine creates neuroinflammation via the activation of an innate immune receptor and not via classic opioid receptors. We demonstrate that morphine binds to an accessory protein of Toll-like receptor 4 (TLR4), myeloid differentiation protein 2 (MD-2), thereby inducing TLR4 oligomerization and triggering proinflammation. Small-molecule inhibitors, RNA interference, and genetic knockout validate the TLR4/MD-2 complex as a feasible target for beneficially modifying morphine actions. Disrupting TLR4/MD-2 protein–protein association potentiated morphine analgesia in vivo and abolished morphine-induced proinflammation in vitro, the latter demonstrating that morphine-induced proinflammation only depends on TLR4, despite the presence of opioid receptors. These results provide an exciting, nonconventional avenue to improving the clinical efficacy of opioids.Xiaohui Wang, Lisa C. Loram, Khara Ramos, Armando J. de Jesus, Jacob Thomas, Kui Cheng, Anireddy Reddy, Andrew A. Somogyi, Mark R. Hutchinson, Linda R. Watkins and Hang Yi
A robust method for measurement of fluctuation parallel wavenumber in laboratory plasmas
Measuring the parallel wavenumber is fundamental for the experimental characterization of electrostatic instabilities. It becomes particularly important in toroidal geometry, where spatial inhomogeneities and curvature can excite both drift instabilities, whose wavenumber parallel to the magnetic field is finite, and interchange instabilities, which typically have vanishing parallel wavenumber. We demonstrate that multipoint measurements can provide a robust method for the discrimination between the two cases
Dissipation in nanocrystalline-diamond nanomechanical resonators
We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T^(0.2), with Q^(–1) ≈ 10^(–4) at low temperatures. The frequency dependence of a large dissipation feature at ~35–55 K is consistent with thermal activation over a 0.02 eV barrier with an attempt frequency of 10 GHz
Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion
We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa
PTC Taste Threshold Distributions and Age in Mennonite Populations
This is the published version. Copyright 1982 Wayne State University Press.A number of studies report an impairment of the genetically inherited ability to taste PTC as a function of age, but ignore the cumulative effect of smoking on taste deterioration. This study examines the effect of aging on taste sensitivity in nonsmoking Mennonite populations. The results obtained preclude a cause and effect relationship between age and PTC taste sensitivity. These results are congruent with the claims which ascribe the observed deterioration in PTC taste sensitivity to the cumulative effects of smoking, rather than to the effects of aging per se
Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment
The first observation of fast and slow magnetocoriolis (MC) waves in a
laboratory experiment is reported. Rotating nonaxisymmetric modes arising from
a magnetized turbulent Taylor-Couette flow of liquid metal are identified as
the fast and slow MC waves by the dependence of the rotation frequency on the
applied field strength. The observed slow MC wave is damped but the observation
provides a means for predicting the onset of the Magnetorotational Instability
Gapless finite- theory of collective modes of a trapped gas
We present predictions for the frequencies of collective modes of trapped
Bose-condensed Rb atoms at finite temperature. Our treatment includes a
self-consistent treatment of the mean-field from finite- excitations and the
anomolous average. This is the first gapless calculation of this type for a
trapped Bose-Einstein condensed gas. The corrections quantitatively account for
the downward shift in the excitation frequencies observed in recent
experiments as the critical temperature is approached.Comment: 4 pages Latex and 2 postscript figure
Lucky Girls: Unintentional Avoidance of Adolescent Pregnancy Among Low-Income African-American Females
To describe lucky adolescents who unintentionally avoid pregnancy. DESIGN AND METHODS . The second phase of a descriptive qualitative study in which 17 low-income African-American females ages 19 to 26 participated in open-ended interviews on how they avoided pregnancy as adolescents. RESULTS . Constant comparative analysis revealed that five of the girls avoided pregnancy because they were “lucky“ that others insisted they use contraceptives. These lucky girls were unaware of sexual risks, but used contraceptives because they complied with decisions made by their parents, grandparents, and partners. PRACTICE IMPLICATIONS . Lucky girls are at risk for adolescent pregnancy because they abdicate decision making to others and are likely to be overlooked in practice because they are using contraceptives. Promoting self-protection includes assessment, knowledge, skills-building strategies, and health-promoting contracts between the nurse and adolescent.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73296/1/j.1744-6155.2002.tb00171.x.pd
- …