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Abstract

Measuring the parallel wavenumber is fundamental for the experimental characterization of elec-

trostatic instabilities. It becomes particularly important in toroidal geometry, where spatial in-

homogeneities and curvature can excite both drift instabilities, whose wavenumber parallel to

the magnetic field is finite, and interchange instabilities, which typically have vanishing parallel

wavenumber. We demonstrate that multipoint measurements can provide a robust method for the

discrimination between the two cases.
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I. INTRODUCTION

Devices for basic plasma physics experiments in linear and toroidal geometry are used

worldwide to study the properties of electrostatic instabilities [1]-[8] and their transition to

turbulence [9]-[10]. For some regimes drift and flute (or interchange) modes co-exist [11]-[13],

and a correct identification of the nature of the instability is therefore essential. A number

of properties are commonly used to infer the nature of an instability from experimental data.

These include the dispersion relation, both perpendicular and parallel to the magnetic field,

the associated phase velocity across the magnetic field, the phase shift between density and

plasma potential fluctuations [14]. However, for non-vanishing temperature fluctuations or

highly nonlinear fluctuations, the phase shift is not univocally defined and may lead to am-

biguous results [13]. The dispersion relation across the magnetic field is often similar for

pure drift and drift-interchange instabilities, and it cannot be used to discriminate between

the two. Moreover, Doppler corrections due to the fluid E×B velocity can be much larger

than the phase velocity itself, and the estimate of the latter is strongly affected by experi-

mental uncertainty. In contrast, k‖ is unique for drift and interchange instabilities [15]. Its

accurate measurement is therefore critical for a correct identification of the instabilities. In

principle, k‖ can be extracted from the phase difference between fluctuations - for example

in the density - measured by a pair of probes separated along the magnetic field. Examples

of measurement of wavenumber, correlation length, cross-coherence and cross-phase along

the magnetic field in tokamaks and basic plasma physics devices are given in Refs. [16]-[17].

In those experiments one probe was fixed and the other was scanned along z. In practice,

the probes can never be perfectly aligned, so that the measurement can be affected by the

projection of k⊥ � k‖ along the direction of measurement, leading to an overestimate of k‖.

In addition, probes with finite size act as a high-pass filter in k-space [18], making the mea-

surement untrustful for small values of k‖. It is therefore difficult to discriminate between a

small but finite k‖ associated with drift (including drift-interchange) waves in plasmas with

small ion Larmor radius and a vanishing k‖ associated with flute instabilities. Probe arrays

are less sensitive to these negative effects, and have been used, for example, to reconstruct

the three dimensional nature of drift wave turbulence [19]. In addition, they can provide

information on the full dispersion relation (along the magnetic field and perpendicular to

it) in a single discharge and at different locations. For example, a reconstruction of the
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radial vs perpendicular dynamics is important to investigate the transfer of energy due to

nonlinear, quadratic interactions, since the ‘frozen flow hypothesis’ may fail if the condition

kR � kz is violated, as discussed in [10]. As a drawback, probes may represent a stronger

perturbation to the plasma. Perturbations can be minimized in basic plasma devices such

as TORPEX (see Sec. II), in which, typically, the ion Larmor radius is substantially larger

than the probe size [20][21]. This is achieved by optimizing the distance between the tips of a

probe array and the toroidal displacement between probes. Therefore, although a two-point

measurement is less perturbative, the reconstruction of the parallel wavenumber using a fix

probe and an array of probes is more precise and robust, providing coherent measurements

of fluctuations over an extended region for a single plasma discharge. In this paper it is

shown that, by using arrays of Langmuir probes the effect of k⊥ on the measurement can be

isolated and the value of k‖ can be extracted unambiguously.

II. EXPERIMENTAL SETUP AND METHOD

The experiments presented herein are performed in the toroidal device TORPEX [7]

(major radius R0 = 1 m, minor radius 0.2 m), in Hydrogen plasmas at a neutral gas pressure

of 6×10−5 mbar. The helical magnetic field lines result from the superposition of a dominant

toroidal component Bφ < 100 mT, and a small vertical component Bz ≤ 4 mT. Plasmas are

generated and sustained by microwaves injected from the low field side, with a frequency of

2.45 GHz, in the range of the electron cyclotron frequencies [22][23]. Typical time-averaged

parameters are density ∼ 1016−1017 m−3, electron temperature ∼ 5 eV and plasma potential

∼ 10− 20 V.

A cylindrical reference frame is used in the following, where R is the major radius, z is the

vertical coordinate with respect to the midplane and φ is the toroidal angle. Figure 1 shows

the arrangement of the probes used to measure the dispersion relation on TORPEX. One

array (S) has eight tips with mutual separation of 1.8 cm, with tip #1 being located at

midplane. This movable array is commonly used in sweeping mode for the measurement of

the time-averaged plasma parameters over the region |R − R0| ≤ 12 cm and |z| ≤ 13 cm.

The second array (T) has twelve tips arranged in a 4 × 3 grid, with horizontal separation

of 1 cm and vertical separation of 1.8 cm, with tips #1-4 being located at midplane. This

array can be used in sweeping mode for the measurement of the radial pressure gradients
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and of the radial electric field. The arrays S and T are located respectively at positions

O′ and O on the equatorial plane and separated by OO′ = R∆φ, with ∆φ = π/2. The

following considerations enter in the choice of the toroidal distance between arrays. First,

it has to be long enough that the probes can be considered point-like with respect to their

mutual distance, as also discussed in [18]. Second, it has to be short enough that the level

of coherence in the range of frequencies of interest is sufficiently high, but yet the probes

are not ‘shielding’ each other. On TORPEX, measurements performed with a third array,

positioned at 2π/3 from array S, revealed in some cases, especially in plasma configurations

where the degree of turbulence is high, a reduction of the coherence by a factor of three.

The toroidal separation between arrays is therefore optimized in order to minimize the errors

introduced in the measurements by the finite probe size, yet maintaining high the coherence

even in the presence of high degree of turbulence.

The directions of k‖ and k⊥ are shown in Fig. 1(c), with k‖ along the magnetic field and k⊥

on the plane perpendicular to it. Taking O as the reference position, there is a magnetic

field line passing through O that intersects the array S, whose z coordinate, measured with

respect to the equatorial plane, is:

z0 = R∆φ
Bz

Bφ

, (1)

Both arrays can rotate around their shaft, on a plane perpendicular to R. In the following

derivation it is assumed that the array T is kept vertical, while the array S can assume an

arbitrary angle α with respect to the positive z axis, as shown in Fig. 1(b). The direction of

the measured wavenumber, indicated in Fig. 1(c) as km, will be a combination of k‖ and k⊥.

Due to the low ratio of k‖ to k⊥, the measurement can be strongly affected by the projection

of k⊥ along the direction of measurement.

Indicating with γ the angle between the direction of measurement and the z axis, the

measured wavenumber is:

km = k‖ cos γ ± k⊥ sin γ (2)

where the positive and negative sign hold respectively for α > π/2 and for α < π/2, and

cos γ = (km · ẑ)/|km|. Using trigonometric relations, the measured wavenumber km can be
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written as:

km(z) =
k⊥√

1 +
(
z
L

)2

√
1 +

(
Bz
Bφ

)2
× (3)

[
k‖
k⊥

+
Bz

Bφ

− z

L

(
1− Bz

Bφ

k‖
k⊥

)]
where L = R∆φ+ z tanα is the toroidal distance between tips, measured at the midplane.

On TORPEX typically Bz/Bφ ≤ 3×10−2 and k‖/k⊥ < 10−2. The term (Bz/Bφ)(k‖/k⊥) can

therefore be neglected with respect to unity. These values for the magnetic field and for the

ratio k‖/k⊥ are typical for several basic plasma physics experiments in toroidal geometry

(see, for example, Ref. [2] and references therein). Moreover
√

1 + (z/L)2 ∼= 1, as the

correction to unity is ≈ 0.2% at the maximum vertical distance between tips, ∆z ∼ 11.8

cm. With these approximations the measured wavenumber finally results to be:

km ∼= k‖ + k⊥

(
z0

L− z tanα
− z

L

)
(4)

For α = 0, π (array S vertical) this reduces to:

km ∼= k‖ + k⊥
z0 − z
L

(5)

Note that km = k‖ when z = z0. In the case of k‖ = 0, the measured wavenumber changes

its sign crossing the magnetic field line, since the only contribution comes in this case from

the projection of k⊥ along the direction of measurement. In general, for k‖/kz � 1 and

for measurements not taken along the magnetic field line, the measured wavenumber is

dominated by the contribution of k⊥. For k‖ 6= 0 the relative error on the measurement of

k‖ can be quantified as:
km − k‖
k‖

∼=
k⊥
k‖

z − z0

L
(6)

The relative error increases with the distance z from the magnetic field line at z0 because of

the projection of k⊥. The linear dependence expressed by Eq. (5) can be used to interpolate

the value of the wavenumber at position z0, which also represents the most accurate estimate

of k‖. Alternatively, Eq. (5) can be used to infer the value of both k‖ and k⊥ from a linear

fit of the experimental data. The value of k⊥ obtained from the fit can then be compared to

independent measurements of kz performed in the same plasma and at the same position,

for example using two tips of the array T aligned along z. The comparison between the
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value of k⊥ from Eq. (5) and independent estimates of kz from two-point measurements [24]

typically shows a good agreement [8].

Measurements with the array S oriented downward, with |α| < π/4 with respect to the mid-

plane, have revealed a strong shadowing effect between tips. Rather than trying to adjust

the angle of rotation of the probes to increase the experimental points in the region of z0,

a more accurate estimate of k‖ can be obtained by keeping the array S vertical and using

Eq. (5) to extract k‖.

For each combination of probe pairs from the arrays S and T, we have measured the

wavenumber and frequency power spectrum P (km, ω) along the toroidal direction and at

various positions along the major radius R, following the method described in Ref. [24]:

P (km, ω) =
1

M

M∑
j=1

I∆[kjm(ω)−K]
1

2
[PS(zS, ω) + PT (zT , ω)] . (7)

Here the sum runs over M independent samples and PS(zS, ω) and PT (zT , ω) are the power

spectra computed from the density fluctuations measured respectively using probes S and T

at vertical positions zS and zT . The wavenumber kjm(ω) is computed from the cross-spectrum

between S and T:

kjm(ω) =
1√

L2 + ∆z2
arg[nj∗S (zS, ω)njT (zT , ω)] (8)

The indicator function I∆, the discrete equivalent of the delta function, is defined as:

I2∆[kjm(ω)−K] =

 1 K −∆ ≤ kjm(ω) < K + ∆

0 elsewhere
(9)

Computing (7) is equivalent to constructing a histogram: for each sample j, the measured

wavenumber kjm(ω) is compared with the reference values of K. The resulting power spec-

trum provides an indication of the degree of turbulence in the plasma and can be used to

estimate the average dispersion relation along the direction of alignment of probes [24].

III. RESULTS

An application of the method described in the previous section is shown here in the case

of a drift-interchange instability with k‖ 6= 0 (Fig. 2), and in the case of an interchange

instability, with k‖ = 0 (Fig. 3). The identification of the nature of electrostatic instabilities

on TORPEX has been extensively discussed elsewhere and it is not repeated here [8][13][? ].
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Both drift and interchange modes are observed on TORPEX, with amplitude that depend

on the value of the magnetic field connection length, which can be controlled by varying

the magnitude of the vertical field component [13]. The toroidal magnetic field is the same

in the two cases, Bφ = 76 mT, while the vertical field is Bz = 0.6 mT in the first case

and Bz = 1.6 mT in the second. In both cases a coherent mode is detected in the power

spectrum of density fluctuations. This mode is measured both on the high and low field

sides in the case of the drift-interchange instability, but only on the low field side in the

case of the interchange instability, as shown in the inset in Figs. 2-3. We have measured

the wavenumber and frequency spectrum P (km, ω) along the toroidal direction as described

in the previous section and fitted the spectrum with a gaussian function to find the central

frequency and wavenumber and the spectral width of the mode.

The figures report the values of the coherence spectrum γ2 measured at the frequency of the

mode, computed from cross-measurements between tip #2 of array T and all the eight tips

in array S. For both instabilities the value of γ2 is maximum at a coordinate z closest to

the ideal position of the magnetic field line, z0, indicated in the figures with a dashed line.

In the case of the drift mode, as shown in Fig. 2(a), a second maximum is measured in the

coherence spectrum at R − R0 = −14 cm, at a vertical distance of approximately 4.5 cm

from the first maximum. This position corresponds to the intersection of a field line that

passes through the position occupied by the array T after a complete toroidal turn:

z1 =
Bz

Bφ

R(∆φ+ 2π)

For the sake of completeness and to increase the statistical significance of the linear fit, also

the values of km obtained from the cross-phase between array S and tips #6 and #10 in

array T have been plotted in the figures. The measured wavenumber is plotted as a function

of the vertical distance ∆z = zT − zS.

For both instabilities the measured wavenumbers increase linearly with the vertical sepa-

ration between tips, the slope being a function of k⊥, as from Eq. (5). In the case of the

drift-interchange mode, k‖ = 0.21 m−1 at R − R0 = −14 cm and at the vertical position

where the coherence is maximum. For comparison, the wavenumber measured at the second

maximum of coherence, correcting for the total length of the field line, is 0.16 m−1, compa-

rable with the measurement taken at the absolute maximum of coherence. On the low field

side, the interpolation of the value of km at z0 gives k‖ = 0.19 m−1, in good agreement with
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the measurement taken on the high field side.

In the case of the interchange mode, Fig. 3(c), the measured wavenumber changes its sign

across z0, indicating that k‖ is close to zero. The value of the wavenumber at the coordinate

of maximum coherence spectrum is km ' −0.1 m−1, with a spectral width of 0.1 m−1. An

interpolation of km at the coordinate z0, using the parameters of a linear fit of the exper-

imental data, gives k‖ ' 0.06 m−1. Nevertheless, this value is still an overestimate of k‖,

since systematic errors in the value of the magnetic field and in the exact position of the

arrays (both R and α), affect the estimate of z0, of the distance between tips and therefore

the final value of km. The error on the distance between tips contribute for less than 6%

on the measurement of the parallel wavenumber, while that on the estimate of z0 has been

estimated to be ∆z0 = 0.04z0. Referring to Eq. (1) and (5), the minimum value of k‖ that

can be inferred from a linear interpolation depends therefore on the value of k⊥ and on the

ratio Bz/Bφ, namely kmin ∼ 0.04k⊥Bz/Bφ. For typical values of the magnetic field and k⊥,

it is obtained a minimum value of approximately 0.03 m−1. We note that the width of the

wavenumber spectrum, as estimated from P (km, ω) is anyhow larger than any systematic

error and it should be taken as an indication of the possible deviation of k‖ from zero. In the

example discussed above, with k‖ ' 0.06 m−1 at z0, the width of the wavenumber spectrum

at the position of maximum coherence is 0.1 m−1 � k‖. It should be concluded that, within

the errors of measurement, and taking into account the degree of turbulence, the parallel

wavenumber is vanishing.

To conclude, measurements of the parallel wavenumber based on two probes are affected by

large errors due to the contribution of the projection of the perpendicular wavenumber along

the direction of measurement. For low values of the ratio of the vertical to toroidal fields,

typical of basic plasma physics devices, the dependence of the measured wavenumber on

k⊥ is linear. Combining simultaneous cross-phase measurements taken at different vertical

positions with probe arrays, the linear dependence on k⊥ can be used to obtain a robust

measurement of the value of the parallel wavenumber. Although the advantages of this

method are immediate in basic plasma devices, where probes can be moved along the radial

direction, multipoint measurements can also be applied to sets of fixed Langmuir probes

at the edge of fusion devices. Assessing the dominant character of turbulence, for example

whether drift or interchange, is in fact a topic issue for validation of turbulence codes in

fusion plasmas and for establishing reliable quantitative predictions for burning plasmas.
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FIG. 1: (a) Geometrical setup for the measurements of the parallel wavenumber. The arrays S

and T are positioned at the midplane (black dashed line) and are separated by π/2 along the

toroidal direction. Numbers indicate the tips effectively used for the measurements. The green line

indicates the field line that intersects the tip#2 of array T on the midplane, at the toroidal position

O. (b) Geometry of probes during the measurement of k‖. φ and z denote the toroidal and the

vertical direction in our cylindrical reference, α is the angle formed by the array S (orange) with

the positive z axis. The red and blue line indicate the direction of measurement when the array

S is oriented respectively upward and downward. (c) Direction of the measured wavenumber, km,

when S is oriented downward (blue line) or upward (red line) with respect to the direction of k‖

and k⊥.
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FIG. 2: Top: Value of the coherence spectrum associated with the unstable mode at 4 kHz (see

inset), measured between the 8 tips in the array S and tip #2 in array T. Measurements are done

at R−R0 = −14 cm (a) and R−R0 = 4 cm (b). Bottom: wavenumber measured with respect to

tips #2, 6, 10 of array T, at R − R0 = −14 cm (c) and R − R0 = 4 cm (d). The insets show the

power spectrum P (km, ω) measured at the coordinate of the maximum coherence spectrum.
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FIG. 3: (a) Power spectrum of density fluctuations measured across the magnetic field P (kz, ω)

at R − R0 = 5 cm, for Bz = 1.6 mT. (b) Variation of the coherence spectrum, calculated at the

frequency of the mode, with the vertical separation between tips ∆z = (zT − zS). The dashed

line indicates the vertical coordinate z0 where the magnetic field line passing through the reference

tip at the toroidal location O intersects the array S at toroidal position O′. (c) Variation of the

measured wavenumber km with respect to the vertical separation between tips. The plotted value

of km is the center of the gaussian curve that fits the wavenumber spectrum P (km), the error bar

is its spectral width.
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