615 research outputs found

    An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material

    Get PDF
    Arbuscular mycorrhizal fungi (order Glomales), which form mycorrhizal symbioses with two out of three of all plant species, are believed to be obligate biotrophs that are wholly dependent on the plant partner for their carbon supply. It is thought that they possess no degradative capability and that they are unable to decompose complex organic molecules, the form in which most soil nutrients occur. Earlier suggestions that they could exist saprotrophically were based on observation of hyphal proliferation on organic materials. In contrast, other mycorrhizal types have been shown to acquire nitrogen directly from organic sources. Here we show that the arbuscular mycorrhizal symbiosis can both enhance decomposition of and increase nitrogen capture from complex organic material (grass leaves) in soil. Hyphal growth of the fungal partner was increased in the presence of the organic material, independently of the host plant

    Root system architecture determines fitness in an Arabidopsis mutant in competition for immobile phosphate ions but not for nitrate ions

    Get PDF
    Plant root systems often have complex branching patterns. Models indicate that a complex architecture is only required for the acquisition of immobile resources, such as phosphate; mobile ions, notably nitrate, can be effectively taken up by very restricted root systems. We have tested this prediction using the axr4 mutation of Arabidopsis thaliana, the principal phenotypic effect of which is to reduce the number of lateral roots. Arabidopsis thaliana is not a host for mycorrhizal fungi and so acquires all its nutrients through the root system. In both a pot experiment and a field experiment conducted under natural conditions for A. thaliana, we found that only phosphate, and not nitrate, affected the fitness of the mutant relative to the isogenic wild-type line, Columbia. These results confirm model predictions and have implications both for the evolution of complex root systems and for the design of efficient root systems for crops

    Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis

    Get PDF
    Plant root systems can respond to nutrient availability and distribution by changing the three-dimensional deployment of their roots: their root system architecture (RSA). We have compared RSA in homogeneous and heterogeneous nitrate and phosphate supply in Arabidopsis. Changes in nitrate and phosphate availability were found to have contrasting effects on primary root length and lateral root density, but similar effects on lateral root length. Relative to shoot dry weight (DW), primary root length decreased with increasing nitrate availability, while it increased with increasing phosphate supply. Lateral root density remained constant across a range of nitrate supplies, but decreased with increasing phosphate supply. In contrast, lateral root elongation was suppressed both by high nitrate and high phosphate supplies. Local supplies of high nitrate or phosphate in a patch also had different effects. Primary root growth was not affected by a high nitrate patch, but growth through a high phosphate patch reduced primary root growth after the root left the patch. A high nitrate patch induced an increase in lateral root density in the patch, whereas lateral root density was unaffected by a high phosphate patch. However, both phosphate- and nitrate-rich patches induced lateral root elongation in the patch and suppressed it outside the patch. This co-ordinated response of lateral roots also occurs in soil-grown plants exposed to a nutrient-rich patch. The auxin-resistant mutants axr1, axr4 and aux1 all showed the wild-type lateral root elongation responses to a nitrate-rich patch, suggesting that auxin is not required for this response

    Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14

    Get PDF
    Processes in the soil remain among the least well-characterized components of the carbon cycle. Arbuscular mycorrhizal (AM) fungi are ubiquitous root symbionts in many terrestrial ecosystems and account for a large fraction of photosynthate in a wide range of ecosystems; they therefore play a key role in the terrestrial carbon cycle. A large part of the fungal mycelium is outside the root ( the extraradical mycelium, ERM) and, because of the dispersed growth pattern and the small diameter of the hyphae (<5 micrometers), exceptionally difficult to study quantitatively. Critically, the longevity of these. ne hyphae has never been measured, although it is assumed to be short. To quantify carbon turnover in these hyphae, we exposed mycorrhizal plants to fossil ("carbon-14 - dead") carbon dioxide and collected samples of ERM hyphae ( up to 116 micrograms) over the following 29 days. Analyses of their carbon-14 content by accelerator mass spectrometry (AMS) showed that most ERM hyphae of AM fungi live, on average, 5 to 6 days. This high turnover rate reveals a large and rapid mycorrhizal pathway of carbon in the soil carbon cycle

    Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species

    Get PDF
    We investigated the extent to which leaf and root respiration W differ in their response to short- and long-term changes in temperature in several contrasting plant species (herbs, grasses, shrubs and trees) that differ in inherent relative growth rate (RGR, increase in mass per unit starting mass and time). Two experiments were conducted using hydroponically grown plants. In the long-term (LT) acclimation experiment, 16 species were grown at constant 18,23 and 28degreesC. In the short-term (ST) acclimation experiment, 9 of those species were grown at 25/20degreesC (day/night) and then shifted to a 15/10degreesC for 7 days. Short-term Q(10) values (proportional change in R per 10degreesC) and the degree of acclimation to. longer-term changes in temperature were compared. The effect of growth temperature on root and leaf soluble sugar and nitrogen concentrations was examined. Light-saturated photosynthesis (A(sat)) was also measured in the LT acclimation experiment. Our results show that Q(10) values and the degree of acclimation are highly variable amongst species and that roots exhibit lower Q(10) values than leaves over the 15-25degreesC measurement temperature range. Differences in RGR or concentrations of soluble sugars/nitrogen could not account for the inter-specific differences in the Q(10) or degree of acclimation. There were no systematic differences in the ability of roots and leaves to acclimate when plants developed under contrasting temperatures (LT acclimation). However, acclimation was greater in both leaves and roots that developed at the growth temperature (LT acclimation) than in pre-existing leaves and roots shifted from one temperature to another (ST acclimation). The balance between leaf R and A(sat) was maintained in plants grown at different temperatures, regardless of their inherent relative growth rate. We conclude that there is tight coupling between the respiratory acclimation and the temperature under which leaves and roots developed and that acclimation plays an important role in determining the relationship between respiration and photosynthesis

    Nitrogen forms affect root structure and water uptake in the hybrid poplar

    Get PDF
    The study analyses the effects of two different forms of nitrogen fertilisation (nitrate and ammonium) on root structure and water uptake of two hybrid poplar (Populus maximowiczii x P. balsamifera) clones in a field experiment. Water uptake was studied using sap flow gauges on individual proximal roots and coarse root structure was examined by excavating 18 whole-root systems. Finer roots were scanned and analyzed for architecture. Nitrogen forms did not affect coarse-root system development, but had a significant effect on fine-root development. Nitrate-treated trees presented higher fine:coarse root ratios and higher specific root lengths than control or ammonium treated trees. These allocation differences affected the water uptake capacity of the plants as reflected by the higher sapflow rate in the nitrate treatment. The diameter of proximal roots at the tree base predicted well the total root biomass and length. The diameter of smaller lateral roots also predicted the lateral root mass, length, surface area and the number of tips. The effect of nitrogen fertilisation on the fine root structure translated into an effect on the functioning of the fine roots forming a link between form (architecture) and function (water uptake)

    Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland

    Get PDF
    1 The arbuscular mycorrhizal (AM) fungi colonizing plants at a woodland site in North Yorkshire (UK) have been characterized from the roots of five plant species (Rubus fruticosus agg. L., Epilobium angustifolium L., Acer pseudoplatanus L., Ajuga reptans L. and Glechoma hederacea L.), and identified using small-subunit rRNA (SSUrRNA) gene amplification and sequencing. 2 Interactions between five plant species from the site and four co-occurring glomalean fungi were investigated in artificial one-to-one AM symbioses. Three of the fungi were isolated from the site; the fourth was a culture genetically similar to a taxon found at the site. Phosphorus uptake and growth responses were compared with non-mycorrhizal controls. 3 Individual fungi colonized each plant with different spatial distribution and intensity. Some did not colonize at all, indicating incompatibility under the conditions used in the experiments. 4 Glomus hoi consistently occupied a large proportion of root systems and outperformed the other fungi, improving P uptake and enhancing the growth of four out of the five plant species. Only G. hoi colonized and increased P uptake in Acer pseudoplatanus, the host plant with which it associates almost exclusively under field conditions. Colonization of all plant species by Scutellospora dipurpurescens was sparse, and beneficial to only one of the host plants (Teucrium scorodonia). Archaeospora trappei and Glomus sp. UY1225 had variable effects on the host plants, conferring a range of P uptake and growth benefits on Lysimachia nummularia and T. scorodonia, increasing P uptake whilst not affecting biomass in Ajuga reptans and Glechoma hederacea, and failing to form mycorrhizas with A. pseudoplatanus. 5 These experimental mycorrhizas show that root colonization, symbiont compatibility and plant performance vary with each fungus-plant combination, even when the plants and fungi naturally co-exist. 6 We provide evidence of physical and functional selectivity in AM. The small number of described AM fungal species (154) has been ascribed to their supposed lack of host specificity, but if the selectivity we have observed is the general rule, then we may predict that many more, probably hard-to-culture glomalean species await discovery, or that members of species as currently perceived may be physiologically or functionally distinct

    Dynamics of hydration water in deuterated purple membranes explored by neutron scattering

    Get PDF
    The function and dynamics of proteins depend on their direct environment, and much evidence has pointed to a strong coupling between water and protein motions. Recently however, neutron scattering measurements on deuterated and natural-abundance purple membrane (PM), hydrated in H2O and D2O, respectively, revealed that membrane and water motions on the ns–ps time scale are not directly coupled below 260 K (Wood et al. in Proc Natl Acad Sci USA 104:18049–18054, 2007). In the initial study, samples with a high level of hydration were measured. Here, we have measured the dynamics of PM and water separately, at a low-hydration level corresponding to the first layer of hydration water only. As in the case of the higher hydration samples previously studied, the dynamics of PM and water display different temperature dependencies, with a transition in the hydration water at 200 K not triggering a transition in the membrane at the same temperature. Furthermore, neutron diffraction experiments were carried out to monitor the lamellar spacing of a flash-cooled deuterated PM stack hydrated in H2O as a function of temperature. At 200 K, a sudden decrease in lamellar spacing indicated the onset of long-range translational water diffusion in the second hydration layer as has already been observed on flash-cooled natural-abundance PM stacks hydrated in D2O (Weik et al. in J Mol Biol 275:632–634, 2005), excluding thus a notable isotope effect. Our results reinforce the notion that membrane-protein dynamics may be less strongly coupled to hydration water motions than the dynamics of soluble proteins

    Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

    Get PDF
    Positive plant diversity-productivity relationships have been reported for experimental semi-natural grasslands (Cardinale et al. 2006; Hector et al. 1999; Tilman et al. 1996) as well as temporary agricultural grasslands (Frankow-Lindberg et al. 2009; Kirwan et al. 2007; Nyfeler et al. 2009; Picasso et al. 2008). Generally, these relationships are explained, on the one hand, by niche differentiation and facilitation (Hector et al. 2002; Tilman et al. 2002) and, on the other hand, by greater probability of including a highly productive plant species in high diversity plots (Huston 1997). Both explanations accept that diversity is significant because species differ in characteristics, such as root architecture, nutrient acquisition and water use efficiency, to name a few, resulting in composition and diversity being important for improved productivity and resource use (Naeem et al. 1994; Tilman et al. 2002). Plant diversity is generally low in temporary agricultural grasslands grown for ruminant fodder production. Grass in pure stands is common, but requires high nitrogen (N) inputs. In terms of N input, two-species grass-legume mixtures are more sustainable than grass in pure stands and consequently dominate low N input grasslands (Crews and Peoples 2004; Nyfeler et al. 2009; Nyfeler et al. 2011). In temperate grasslands, N is often the limiting factor for productivity (Whitehead 1995). Plant available soil N is generally concentrated in the upper soil layers, but may leach to deeper layers, especially in grasslands that include legumes (Scherer-Lorenzen et al. 2003) and under conditions with surplus precipitation (Thorup-Kristensen 2006). To improve soil N use efficiency in temporary grasslands, we propose the addition of deep-rooting plant species to a mixture of perennial ryegrass and white clover, which are the most widespread forage plant species in temporary grasslands in a temperate climate (Moore 2003). Perennial ryegrass and white clover possess relatively shallow root systems (Kutschera and Lichtenegger 1982; Kutschera and Lichtenegger 1992) with effective rooting depths of <0.7 m on a silt loamy site (Pollock and Mead 2008). Grassland species, such as lucerne and chicory, grow their tap-roots into deep soil layers and exploit soil nutrients and water in soil layers that the commonly grown shallow-rooting grassland species cannot reach (Braun et al. 2010; Skinner 2008). Chicory grown as a catch crop after barley reduced the inorganic soil N down to 2.5 m depth during the growing season, while perennial ryegrass affected the inorganic soil N only down to 1 m depth (Thorup-Kristensen 2006). Further, on a Wakanui silt loam in New Zealand chicory extracted water down to 1.9 m and lucerne down to 2.3 m soil depth, which resulted in greater herbage yields compared with a perennial ryegrass-white clover mixture, especially for dryland plots (Brown et al. 2005). There is little information on both the ability of deep- and shallow-rooting grassland species to access soil N from different vertical soil layers and the relation of soil N-access and herbage yield in temporary agricultural grasslands. Therefore, the objective of the present work was to test the hypotheses 1) that a mixture comprising both shallow- and deep-rooting plant species has greater herbage yields than a shallow-rooting binary mixture and pure stands, 2) that deep-rooting plant species (chicory and lucerne) are superior in accessing soil N from 1.2 m soil depth compared with shallow-rooting plant species, 3) that shallow-rooting plant species (perennial ryegrass and white clover) are superior in accessing soil N from 0.4 m soil depth compared with deep-rooting plant species, 4) that a mixture of deep- and shallow-rooting plant species has greater access to soil N from three soil layers compared with a shallow-rooting two-species mixture and that 5) the leguminous grassland plants, lucerne and white clover, have a strong impact on grassland N acquisition, because of their ability to derive N from the soil and the atmosphere

    4f-spin dynamics in La(2-x-y)Sr(x)Nd(y)CuO(4)

    Full text link
    We have performed inelastic magnetic neutron scattering experiments on La(2-x-y)Sr(x)Nd(y)CuO(4) in order to study the Nd 4f-spin dynamics at low energies. In all samples we find at high temperatures a quasielastic line (Lorentzian) with a line width which decreases on lowering the temperature. The temperature dependence of the quasielastic line width Gamma/2(T) can be explained with an Orbach-process, i.e. a relaxation via the coupling between crystal field excitations and phonons. At low temperatures the Nd-4f magnetic response S(Q,omega) correlates with the electronic properties of the CuO(2)-layers. In the insulator La(2-y)Nd(y)CuO(4) the quasielastic line vanishes below 80 K and an inelastic excitation occurs. This directly indicates the splitting of the Nd3+ ground state Kramers doublet due to the static antiferromagnetic order of the Cu moments. In La(1.7-x)Sr(x)Nd(0.3)CuO(4) with x = 0.12, 0.15 and La(1.4-x)Sr(x)Nd(0.6)CuO(4) with x = 0.1, 0.12, 0.15, 0.18 superconductivity is strongly suppressed. In these compounds we observe a temperature independent broad quasielastic line of Gaussian shape below T about 30 K. This suggests a distribution of various internal fields on different Nd sites and is interpreted in the frame of the stripe model. In La(1.8-y)Sr(0.2)Nd(y)CuO(4) (y = 0.3, 0.6) such a quasielastic broadening is not observed even at lowest temperature.Comment: 8 pages, 10 figures included, to appear in Phys. Rev.
    • …
    corecore