96 research outputs found
Sustainable seafood using octopus as a model
The global catch of octopus and squid shows annual variability and demand is likely to increase for both locally-supplied and imported products. However, the vulnerability of seafood resources is now well known, the reliability of fisheries catch data is still unclear, management of cephalopod stocks is mostly rudimentary, and there is uncertainty and concern about their sustainability among fisheries managers, the fishing industry, retailers, researchers and consumers. Here, a new project is presented which aims to address and resolve ways to enhance the effectiveness of seafood sustainability in general, with the aid of a freely accessible identification and traceability tool linked to sophisticated databases, and using artificial intelligence, machine learning and blockchain technology, to provide an easy and reliable way to trace seafood using octopus as a model. The project is a contribution to UN Sustainable Development Goals 2, 9, 14, and 17
New insights into the effects of porosity, pore length, pore shape and pore alignment on drug release from extrusionbased additive manufactured pharmaceuticals
Enabling Innovation: Research to Application (EIRA); Research England Connecting Capability Fund (CCF) project; Redistributed Manufacturing in Healthcare Network (RiHN);; UK Research & Innovation (UKRI)
Engineering & Physical Sciences Research Council (EPSRC) EP/T014970/1
Old Drugs To Treat Resistant Bugs: Methicillin-Resistant Staphylococcus aureus Isolates with mecC Are Susceptible to a Combination of Penicillin and Clavulanic Acid.
β-Lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) is mediated by the expression of an alternative penicillin-binding protein 2a (PBP2a) (encoded by mecA) with a low affinity for β-lactam antibiotics. Recently, a novel variant of mecA, known as mecC, was identified in MRSA isolates from both humans and animals. In this study, we demonstrate that mecC-encoded PBP2c does not mediate resistance to penicillin. Rather, broad-spectrum β-lactam resistance in MRSA strains carrying mecC (mecC-MRSA strains) is mediated by a combination of both PBP2c and the distinct β-lactamase encoded by the blaZ gene of strain LGA251 (blaZLGA251), which is part of mecC-encoding staphylococcal cassette chromosome mec (SCCmec) type XI. We further demonstrate that mecC-MRSA strains are susceptible to the combination of penicillin and the β-lactam inhibitor clavulanic acid in vitro and that the same combination is effective in vivo for the treatment of experimental mecC-MRSA infection in wax moth larvae. Thus, we demonstrate how the distinct biological differences between mecA- and mecC-encoded PBP2a and PBP2c have the potential to be exploited as a novel approach for the treatment of mecC-MRSA infections.This work was supported by a Medical Research Council (MRC) Partnership Grant (G1001787/1) held between the Department of Veterinary Medicine, University of Cambridge (M. A. H.), the School of Clinical Medicine, University of Cambridge (S. J. P.), the Moredun Research Institute (R. N. Z.) and the Wellcome Trust Sanger Institute (J. P. and S. J. P.).This is the author accepted manuscript. The final version is available from American Society for Microbiology via http://dx.doi.org/10.1128/AAC.01469-1
Recommended from our members
An investigation into the effects of ink formulations of semi-solid syringe extrusion 3D printing on the performance of the printed solid dosage forms
Semi-solid extrusion (SSE) 3D printing has recently attracted increased attention for its pharmaceutical application as a potential method for small-batch manufacturing of personalised solid dosage forms. It has the advantage of allowing ambient temperature printing, which is especially beneficial for the 3D printing of thermosensitive drugs. In this study, the effects of polymeric compositions (single hydroxypropyl methylcellulose (HPMC) system and binary HPMC+ Polyvinylpyrrolidone (PVP) system), disintegrant (silicon oxide (SiO2)), and active pharmaceutical ingredients (tranexamic acid (TXA) and paracetamol (PAC)) on the printability of semisolid inks and the qualities of SSE printed drug-loaded tablets were investigated. Printability is defined by the suitability of the material for the process in terms of its physical properties during extrusions and post-extrusion, including rheology, solidification time, avoiding slumping, etc. The rheological properties of the inks were investigated as a function of polymeric compositions and drug concentrations and further correlated with the printability of the inks. The SSE 3D printed tablets were subjected to a series of physicochemical properties characterisations and in vitro drug release performance evaluations. The results indicated that an addition of SiO2 would improve 3D printing shape fidelity (e.g., pore area and porosity) by altering the ink rheology. The pores of HPMC+PVP+5PAC prints completely disappeared after 12 hours of drying (pore area = 0 mm2). An addition of SiO2 significantly improved the pore area of the prints which are 3.5±0.1 mm2. It was noted that the drug release profile of PAC significantly increased (p<0.05) when additive SiO2 was incorporated in the formulation. This could be due to a significantly higher porosity of HPMC+PVP+SiO2+PAC (70.3±0.2%) compared to HPMC+PVP+PAC (47.6±2.1%). It was also likely that SiO2 acted as a disintegrant and speeding up the drug release process. Besides, the incorporation of APIs with different aqueous solubilities, as well as levels of interaction with the polymeric system showed significant impacts on the structural fidelity and subsequently the drug release performance of 3D printed tablets
Development of combi-pills using the coupling of semi-solid syringe extrusion 3D printing with fused deposition modelling
Data availability: Data will be made available on request.Copyright © 2022 The Authors. Three-dimensional (3D) printing allows for the design and printing of more complex designs than traditional manufacturing processes. For the manufacture of personalised medicines, such an advantage could enable the production of personalised drug products on demand. In this study, two types of extrusion-based 3D printing techniques, semi-solid syringe extrusion 3D printing and fused deposition modelling, were used to fabricate a combi-layer construct (combi-pill). Two model drugs, tranexamic acid (water soluble, rapid release) and indomethacin (poorly water-soluble, extended release), were printed with different geometries and materials compositions. Fourier transform infrared spectroscopy results showed that there were no interactions detected between drug-drug and drug-polymers. The printed combi-pills demonstrated excellent abrasion resisting properties in friability tests. The use of different functional excipients demonstrated significant impact on in vitro drug release of the model drugs incorporated in two 3D printed layers. Tranexamic acid and indomethacin were successfully 3D printed as a combi-pill with immediate-release and sustained-release profiles, respectively, to target quick anti-bleeding and prolonged anti-inflammation functions. For the first time, this paper systematically demonstrates the feasibility of coupling syringe-based extrusion 3D printing and fused deposition modelling as an innovative platform for various drug therapy productions, facilitating a new era of personalised combi-pills development.Redistributed Manufacturing in Healthcare Network (RiHN). The RiHN was awarded a grant from the UK Engineering and Physical Sciences Research Council (EPSRC) (Ref. EP/T014970/1)
Recommended from our members
Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing
3D printing has the unique ability to produce porous pharmaceutical solid dosage forms on-demand. Although using porosity to alter drug release kinetics has been proposed in the literature, the effects of porosity on the swellable and erodible porous solid dosage forms have not been explored. This study used a model formulation containing hypromellose acetate succinate (HPMCAS), polyethylene oxide (PEO) and paracetamol and a newly developed hot melt droplet deposition 3D printing method, Arburg plastic free-forming (APF), to examine the porosity effects on in vitro drug release. This is the first study reporting the use of APF on 3D printing porous pharmaceutical tablets. With the unique pellet feeding mechanism of APF, it is important to explore its potential applications in pharmaceutical additive manufacturing. The pores were created by altering the infill percentages (%) of the APF printing between 20 to 100% to generate porous tablets. The printing quality of these porous tablets were examined. The APF printed formulation swelled in pH 1.2 HCl and eroded in pH 6.8 PBS. During the dissolution at pH 1.2, the swelling of the printing pathway led to the gradual decreases in the open pore area and complete closure of pores for the tablets with high infills. In pH 6.8 buffer media, the direct correlation between drug release rate and infills was observed for the tablets printed with infill at and less than 60%. The results revealed that drug release kinetics were controlled by the complex interplay of the porosity and dynamic changes of the tablets caused by swelling and erosion. It also implied the potential impact of fluid hydrodynamics on the in vitro data collection and interpretation of porous solids
Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans.
Several strands of evidence question the dogma that human mitochondrial DNA (mtDNA) is inherited exclusively down the maternal line, most recently in three families where several individuals harbored a 'heteroplasmic haplotype' consistent with biparental transmission. Here we report a similar genetic signature in 7 of 11,035 trios, with allelic fractions of 5-25%, implying biparental inheritance of mtDNA in 0.06% of offspring. However, analysing the nuclear whole genome sequence, we observe likely large rare or unique nuclear-mitochondrial DNA segments (mega-NUMTs) transmitted from the father in all 7 families. Independently detecting mega-NUMTs in 0.13% of fathers, we see autosomal transmission of the haplotype. Finally, we show the haplotype allele fraction can be explained by complex concatenated mtDNA-derived sequences rearranged within the nuclear genome. We conclude that rare cryptic mega-NUMTs can resemble paternally mtDNA heteroplasmy, but find no evidence of paternal transmission of mtDNA in humans
Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus.
Antibiotic resistance in bacterial pathogens threatens the future of modern medicine. One such resistant pathogen is methicillin-resistant Staphylococcus aureus (MRSA), which is resistant to nearly all β-lactam antibiotics, limiting treatment options. Here, we show that a significant proportion of MRSA isolates from different lineages, including the epidemic USA300 lineage, are susceptible to penicillins when used in combination with β-lactamase inhibitors such as clavulanic acid. Susceptibility is mediated by a combination of two different mutations in the mecA promoter region that lowers mecA-encoded penicillin-binding protein 2a (PBP2a) expression, and in the majority of isolates by either one of two substitutions in PBP2a (E246G or M122I) that increase the affinity of PBP2a for penicillin in the presence of clavulanic acid. Treatment of S. aureus infections in wax moth and mouse models shows that penicillin/β-lactamase inhibitor susceptibility can be exploited as an effective therapeutic choice for 'susceptible' MRSA infection. Finally, we show that isolates with the PBP2a E246G substitution have a growth advantage in the presence of penicillin but the absence of clavulanic acid, which suggests that penicillin/β-lactamase susceptibility is an example of collateral sensitivity (resistance to one antibiotic increases sensitivity to another). Our findings suggest that widely available and currently disregarded antibiotics could be effective in a significant proportion of MRSA infections.MRC - G1001787/1
MRC - MR/N002660/1
WT098600
HICF-T5-342
MR/S00291X/1
201344/Z/16/Z
MR/P007201/
The effects of pathogenic and likely pathogenic variants for inherited hemostasis disorders in 140 214 UK Biobank participants
Rare genetic diseases affect millions, and identifying causal DNA variants is essential for patient care. Therefore, it is imperative to estimate the effect of each independent variant and improve their pathogenicity classification. Our study of 140 214 unrelated UK Biobank (UKB) participants found that each of them carries a median of 7 variants previously reported as pathogenic or likely pathogenic. We focused on 967 diagnostic-grade gene (DGG) variants for rare bleeding, thrombotic, and platelet disorders (BTPDs) observed in 12 367 UKB participants. By association analysis, for a subset of these variants, we estimated effect sizes for platelet count and volume, and odds ratios for bleeding and thrombosis. Variants causal of some autosomal recessive platelet disorders revealed phenotypic consequences in carriers. Loss-of-function variants in MPL, which cause chronic amegakaryocytic thrombocytopenia if biallelic, were unexpectedly associated with increased platelet counts in carriers. We also demonstrated that common variants identified by genome-wide association studies (GWAS) for platelet count or thrombosis risk may influence the penetrance of rare variants in BTPD DGGs on their associated hemostasis disorders. Network-propagation analysis applied to an interactome of 18 410 nodes and 571 917 edges showed that GWAS variants with large effect sizes are enriched in DGGs and their first-order interactors. Finally, we illustrate the modifying effect of polygenic scores for platelet count and thrombosis risk on disease severity in participants carrying rare variants in TUBB1 or PROC and PROS1, respectively. Our findings demonstrate the power of association analyses using large population datasets in improving pathogenicity classifications of rare variants
- …