912 research outputs found

    The sentiment analysis of tweets as a new tool to measure public perception of male erectile and ejaculatory dysfunctions

    Get PDF
    Twitter is a social network based on "tweets," short messages of up to 280 characters. Social media has been investigated in health care research to ascertain positive or negative feelings associated with several conditions but never in sexual medicin

    Renoprotection with SGLT2 inhibitors in type 2 diabetes over a spectrum of cardiovascular and renal risk

    Get PDF
    Approximately half of all patients with type 2 diabetes (T2D) develop a certain degree of renal impairment. In many of them, chronic kidney disease (CKD) progresses over time, eventually leading to end-stage kidney disease (ESKD) requiring dialysis and conveying a substantially increased risk of cardiovascular morbidity and mortality. Even with widespread use of renin–angiotensin system blockers and tight glycemic control, a substantial residual risk of nephropathy progression remains. Recent cardiovascular outcomes trials investigating sodium–glucose cotransporter 2 (SGLT2) inhibitors have suggested that these therapies have renoprotective effects distinct from their glucose-lowering action, including the potential to reduce the rates of ESKD and acute kidney injury. Although patients in most cardiovascular outcomes trials had higher prevalence of existing cardiovascular disease compared with those normally seen in clinical practice, the proportion of patients with renal impairment was similar to that observed in a real-world context. Patient cardiovascular risk profiles did not relevantly impact the renoprotective benefits observed in these studies. Benefits were observed in patients across a spectrum of renal risk, but were evident also in those without renal damage, suggesting a role for SGLT2 inhibition in the prevention of CKD in people with T2D. In addition, recent studies such as CREDENCE and DAPA-CKD offer a greater insight into the renoprotective effects of SGLT2 inhibitors in patients with moderate-to-severe CKD. This review outlines the evidence that SGLT2 inhibitors may prevent the development of CKD and prevent and delay the worsening of CKD in people with T2D at different levels of renal risk

    11 beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle

    Get PDF
    OBJECTIVE: Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity. \ud RESEARCH DESIGN AND METHODS: Rodent and human cell cultures, whole-tissue explants, and animal models were used to determine the impact of glucocorticoids and selective 11beta-HSD1 inhibition upon insulin signaling and action. \ud RESULTS: Dexamethasone decreased insulin-stimulated glucose uptake, decreased IRS1 mRNA and protein expression, and increased inactivating pSer307^{307} insulin receptor substrate (IRS)-1. 11beta-HSD1 activity and expression were observed in human and rodent myotubes and muscle explants. Activity was predominantly oxo-reductase, generating active glucocorticoid. A1 (selective 11beta-HSD1 inhibitor) abolished enzyme activity and blocked the increase in pSer307^{307} IRS1 and reduction in total IRS1 protein after treatment with 11DHC but not corticosterone. In C57Bl6/J mice, the selective 11beta-HSD1 inhibitor, A2, decreased fasting blood glucose levels and improved insulin sensitivity. In KK mice treated with A2, skeletal muscle pSer307^{307} IRS1 decreased and pThr308^{308} Akt/PKB increased. In addition, A2 decreased both lipogenic and lipolytic gene expression.\ud CONCLUSIONS: Prereceptor facilitation of glucocorticoid action via 11beta-HSD1 increases pSer307^{307} IRS1 and may be crucial in mediating insulin resistance in skeletal muscle. Selective 11beta-HSD1 inhibition decreases pSer307^{307} IRS1, increases pThr308^{308} Akt/PKB, and decreases lipogenic and lipolytic gene expression that may represent an important mechanism underpinning their insulin-sensitizing action

    Cardiovascular protection with sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: Does it apply to all patients?

    Get PDF
    Patients with type 2 diabetes (T2D) are at an increased risk of cardiovascular disease (CVD). Cardiovascular risk in these patients should be considered as a continuum, and comprehensive treatment strategies should aim to target multiple disease risk factors. Large-scale clinical trials of sodium-glucose co-transporter-2 (SGLT2) inhibitors have shown an impact on cardiovascular outcomes, including heart failure hospitalization and cardiovascular death, which appears to be independent of their glucose-lowering efficacy. Reductions in major cardiovascular events appear to be greatest in patients with established CVD, particularly those with prior myocardial infarction, but are independent of heart failure or renal risk. Most large-scale trials of SGLT2 inhibitors predominantly include patients with T2D with pre-existing CVD and high cardiovascular risk at baseline, limiting their applicability to patients typically observed in clinical practice. Real-world evidence from observational studies suggests that there might also be beneficial effects of SGLT2 inhibitors on heart failure hospitalization and all-cause mortality in various cohorts of lower risk patients. The most common adverse events reported in clinical and observational studies are genital infections; however, the overall risk of these events appears to be low and easily managed. Similar safety profiles have been reported for elderly and younger patients. There is still some debate regarding the safety of canagliflozin in patients at high risk of fracture and amputation. Outstanding questions include specific patterns of cardiovascular protection according to baseline risk

    Commentary: Glucose control: Not just a bystander in GLP-1RA-mediated cardiovascular protection

    Get PDF
    Cardiovascular (CV) disease prevention in type 2 diabetes (T2D)demands multifactorial interventions including treatment of dyslipidemia, hypertension, hypercoagulability, and certainly hyperglycemia[1]. However, randomized controlled trials specifically addressing the impact of intensive glucose control (IGC) on CV outcomes yielded ambiguous results [2], while real-life evidence from a Swedish nationwide registry showed hyperglycemia as the strongest predictor of myocardial infarction (MI) and stroke [3]. Although CV outcome trials (CVOT) with GLP-1 receptor agonists (GLP-1RA) were designed to achieve glycemic equipoise, all showed a greater HbA1c reduction in the intervention arm [4–10], allowing to consider the potential effect of different degrees of glucose-lowering on their resul

    Dysmetabolic adipose tissue in obesity: morphological and functional characteristics of adipose stem cells and mature adipocytes in healthy and unhealthy obese subjects

    Get PDF
    The way by which subcutaneous adipose tissue (SAT) expands and undergoes remodeling by storing excess lipids through expansion of adipocytes (hypertrophy) or recruitment of new precursor cells (hyperplasia) impacts the risk of developing cardiometabolic and respiratory diseases. In unhealthy obese subjects, insulin resistance, type 2 diabetes, hypertension, and obstructive sleep apnoea are typically associated with pathologic SAT remodeling characterized by adipocyte hypertrophy, as well as chronic inflammation, hypoxia, increased visceral adipose tissue (VAT), and fatty liver. In contrast, metabolically healthy obese individuals are generally associated with SAT development characterized by the presence of smaller and numerous mature adipocytes, and a lower degree of VAT inflammation and ectopic fat accumulation. The remodeling of SAT and VAT is under genetic regulation and influenced by inherent depot-specific differences of adipose tissue-derived stem cells (ASCs). ASCs have multiple functions such as cell renewal, adipogenic capacity, and angiogenic properties, and secrete a variety of bioactive molecules involved in vascular and extracellular matrix remodeling. Understanding the mechanisms regulating the proliferative and adipogenic capacity of ASCs from SAT and VAT in response to excess calorie intake has become a focus of interest over recent decades. Here, we summarize current knowledge about the biological mechanisms able to foster or impair the recruitment and adipogenic differentiation of ASCs during SAT and VAT development, which regulate body fat distribution and favorable or unfavorable metabolic responses

    Efficacy and safety of GLP-1 receptor agonists as add-on to SGLT2 inhibitors in type 2 diabetes mellitus: A meta-analysis

    Get PDF
    GLP-1 receptor agonists (GLP-1RA) and SGLT2 inhibitors (SGLT2i) have been associated with improved glycemic control, body weight loss and favorable changes in cardiovascular risk factors and outcomes. We conducted a systematic review and meta-analysis to evaluate the effects of the addition of GLP-1RA to SGLT2i in patients with type 2 diabetes mellitus and inadequate glycemic control. Six databases were searched until March 2019. Randomized controlled trials (RCT) with a follow-up of at least 24 weeks reporting on HbA1c, body weight, systolic blood pressure, lipids, achievement of HbA1c < 7%, requirement of rescue therapy due to hyperglycemia and hypoglycemic events were selected. Four RCTs were included. Compared to SGLT2i, the GLP-1RA/SGLT2i combination was associated with greater reduction in HbA1c (−0.74%), body weight (−1.61 kg), and systolic blood pressure (−3.32 mmHg). A higher number of patients achieved HbA1c < 7% (RR = 2.15), with a lower requirement of rescue therapy (RR = 0.37) and similar incidence of hypoglycemia. Reductions in total and LDL cholesterol were found. The present review supports treatment intensification with GLP-1RA in uncontrolled type 2 diabetes on SGLT2i. This drug regimen could provide improved HbA1c control, together with enhanced weight loss and blood pressure and lipids control

    Irisin and incretin hormones: Similarities, differences, and implications in type 2 diabetes and obesity

    Get PDF
    Incretins are gut hormones that potentiate glucose-stimulated insulin secretion (GSIS) after meals. Glucagon-like peptide-1 (GLP-1) is the most investigated incretin hormone, synthesized mainly by L cells in the lower gut tract. GLP-1 promotes β-cell function and survival and exerts beneficial effects in different organs and tissues. Irisin, a myokine released in response to a high-fat diet and exercise, enhances GSIS. Similar to GLP-1, irisin augments insulin biosynthesis and promotes accrual of β-cell functional mass. In addition, irisin and GLP-1 share comparable pleiotropic effects and activate similar intracellular pathways. The insulinotropic and extra-pancreatic effects of GLP-1 are reduced in type 2 diabetes (T2D) patients but preserved at pharmacological doses. GLP-1 receptor agonists (GLP-1RAs) are therefore among the most widely used antidiabetes drugs, also considered for their cardiovascular benefits and ability to promote weight loss. Irisin levels are lower in T2D patients, and in diabetic and/or obese animal models irisin administration improves glycemic control and promotes weight loss. Interestingly, recent evidence suggests that both GLP-1 and irisin are also synthesized within the pancreatic islets, in α-and β-cells, respectively. This review aims to describe the similarities between GLP-1 and irisin and to propose a new potential axis–involving the gut, muscle, and endocrine pancreas that controls energy homeostasis

    The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor

    Get PDF
    Reactive oxygen species (ROS) are highly reactive chemical species containing oxygen, controlled by both enzymatic and nonenzymatic antioxidant defense systems. In the heart, ROS play an important role in cell homeostasis, by modulating cell proliferation, differentiation, and excitation-contraction coupling. Oxidative stress occurs when ROS production exceeds the buffering capacity of the antioxidant defense systems, leading to cellular and molecular abnormalities, ultimately resulting in cardiac dysfunction. In this review, we will discuss the physiological sources of ROS in the heart, the mechanisms of oxidative stress-related myocardial injury, and the implications of experimental studies and clinical trials with antioxidant therapies in cardiovascular diseases
    corecore