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Abstract
The way by which subcutaneous adipose tissue (SAT) expands and undergoes remodeling by storing excess lipids through 
expansion of adipocytes (hypertrophy) or recruitment of new precursor cells (hyperplasia) impacts the risk of developing 
cardiometabolic and respiratory diseases. In unhealthy obese subjects, insulin resistance, type 2 diabetes, hypertension, and 
obstructive sleep apnoea are typically associated with pathologic SAT remodeling characterized by adipocyte hypertrophy, 
as well as chronic inflammation, hypoxia, increased visceral adipose tissue (VAT), and fatty liver. In contrast, metabolically 
healthy obese individuals are generally associated with SAT development characterized by the presence of smaller and numer-
ous mature adipocytes, and a lower degree of VAT inflammation and ectopic fat accumulation. The remodeling of SAT and 
VAT is under genetic regulation and influenced by inherent depot-specific differences of adipose tissue-derived stem cells 
(ASCs). ASCs have multiple functions such as cell renewal, adipogenic capacity, and angiogenic properties, and secrete a 
variety of bioactive molecules involved in vascular and extracellular matrix remodeling. Understanding the mechanisms 
regulating the proliferative and adipogenic capacity of ASCs from SAT and VAT in response to excess calorie intake has 
become a focus of interest over recent decades. Here, we summarize current knowledge about the biological mechanisms 
able to foster or impair the recruitment and adipogenic differentiation of ASCs during SAT and VAT development, which 
regulate body fat distribution and favorable or unfavorable metabolic responses.
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Introduction

White adipose tissue (WAT), traditionally regarded as the 
primary storage organ of energy in the form of triglycer-
ides, is now considered as an important endocrine tissue that 
secretes biologically active molecules, known as adipokines, 
involved in whole-body energy metabolism and systemic 
inflammation [1]. Although chiefly composed of adipocytes, 
adipose tissue is also an abundant source of mesenchymal 
stem cells (adipose tissue-derived stem cells, ASCs), which 

provide for the physiological cell turnover and are utilized 
in cell-based therapy for regenerative medicine purposes [2].

The generation of new adipocytes from ASCs is one of 
the major factors that fosters the growth of adipose tissue 
during lifetime. In a lifestyle characterized by a persistent 
positive energy balance, WAT expands by an increase in 
size of pre-existing adipocytes (hypertrophy) and by activat-
ing progenitors to generate new adipocytes (hyperplasia). 
Indeed, WAT is characterized by a continuous turnover of 
the adipocytes with ~ 10% of annual renewal, although the 
number of new adipocytes added is about twice as high in 
obese as compared to non-obese subjects [3, 4]. Adipose 
tissue undergoes a continuous remodeling process that is 
pathologically accelerated in the obese state and featured 
by coordinate increases of adipocyte size and number, with 
impaired angiogenic remodeling and subsequent increased 
immune cell infiltration and extracellular matrix (ECM) 
overproduction [5]. When obesity is sustained by a posi-
tive energy balance, adipose tissue becomes dysfunctional 

S. Porro, V. A. Genchi have contributed equally to this work.

 *	 F. Giorgino 
	 francesco.giorgino@uniba.it

1	 Section of Internal Medicine, Endocrinology, Andrology 
and Metabolic Diseases, Department of Emergency 
and Organ Transplantation, University of Bari Aldo Moro, 
Piazza Giulio Cesare, 11, 70124 Bari, Italy

http://orcid.org/0000-0001-7372-2678
http://crossmark.crossref.org/dialog/?doi=10.1007/s40618-020-01446-8&domain=pdf


	 Journal of Endocrinological Investigation

1 3

and is characterized by impaired secretion of adipokines and 
abnormal lipid storage, with an increased risk of developing 
obesity complications such as insulin resistance (IR), type 2 
diabetes (T2D), obstructive sleep apnea, steatohepatitis, and 
cardiovascular and cerebrovascular diseases [6, 7].

Obesity-related cardiometabolic diseases are known to 
be associated with the expansion of visceral adipose tissue 
(VAT), whereas the increased amount of subcutaneous adi-
pose tissue (SAT) does not raise these risks and may be even 
protective [8, 9]. Recently, several studies indicate that the 
SAT expansion capacity is limited and genetically deter-
mined in every individual. Once this capacity is exceeded, 
any excess circulating triacylglycerol will be stored in an 
undesirable fat depot, fostering the expansion of VAT, or 
in non-adipose tissues (e.g., liver, muscle) leading to liver 
steatosis and increased intramyocellular lipid content and 
thus promoting the cardiometabolic complications of obesity 
[10, 11] (Fig. 1). In contrast, the ability of SAT to store the 
excess of fat rather than allowing it to accumulate in ectopic 
depots is a major determinant for a healthy obesity status. 
Therefore, it has been suggested that the disease risk asso-
ciated with obesity is not uniform, since obese individuals 
with higher SAT expansion and characterized by the absence 
of metabolic abnormalities may be referred as metabolically 
healthy (metabolically healthy obesity, MHO) (Fig. 1) [12]. 
The “subcutaneous adipose tissue expandability hypothesis” 

argues that there are molecular mechanisms governing adi-
pose tissue expansion that act through the promotion of 
adipogenesis by resident ASCs. The ability to recruit and 
differentiate ASCs into mature adipocytes in SAT, fostering 
its expansion, is under genetic regulation and is influenced 
by the environment (i.e., changes in nutrient load and energy 
expenditure). Here, we summarize the inherent depot-spe-
cific differences of subcutaneous and visceral ASCs and 
discuss the major biological mechanisms underlying the 
impaired adipogenesis and expansion of SAT under condi-
tions requiring the need to store excess lipids.

Depot‑specific characteristics of adipose 
tissue

Adipose tissue plays a fundamental role in controlling the 
flow of circulating fatty acids in the post-prandial period. 
Insulin acts on adipose tissue by stimulating storage of 
triglycerides through multiple mechanisms, including 
increasing the uptake of glucose and fatty acids derived 
from circulating lipoproteins and inhibiting lipolysis in 
adipocytes, and, in the long term, promoting lipogenesis in 
mature adipocytes as well as differentiation of preadipocytes 
[13]. Moreover, adipose tissue has been recognized as an 
active endocrine organ that express and secrete a variety of 

Fig. 1   Subcutaneous adipose tissue remodeling in response to demand for increased energy storage in healthy and unhealthy obesity
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bioactive peptides, known as adipokines, which act at both 
the local (autocrine/paracrine) and systemic (endocrine) 
levels [14, 15].

The key role of the endocrine function of adipose tissue is 
emphasized by the adverse metabolic consequences derived 
by both adipose tissue excess and deficiency. Excess accu-
mulation of WAT, particularly in the visceral compartment, 
is associated with increased pro-inflammatory adipokines 
that bring about several cardiometabolic abnormalities such 
as IR, T2D, dyslipidemia, non-alcoholic fatty liver disease, 
and hypertension [16]. Interestingly, lipodystrophy, charac-
terized by loss of WAT, is also associated with dysregula-
tion of adipokines and severe metabolic complications [17]. 
Thus, adipose tissue is a complex and highly active meta-
bolic and endocrine organ, the excess or deficiency of which 
both lead to harmful metabolic consequences.

Body fat tissue is traditionally distributed into two main 
compartments with different metabolic characteristics: SAT, 
located under the skin and VAT, located around the diges-
tive organs (mainly mesenteric and omental) [18]. SAT con-
stitutes most of the body’s adipose mass (about 80%) and 
is uniformly distributed at birth; subsequently, it tends to 
localize differently in the various body regions, mainly as a 
consequence of sexual development and progression of age 
[17]. The distinct adipose tissue depots exhibit differences 
in cellular composition, microvasculature, innervation, and 
ECM composition, and have a specific metabolic profile and 
endocrine activity. VAT compared to SAT is more inner-
vated and vascularized, contains a larger number of inflam-
matory and immune cells [19], and has a large percentage of 
hypertrophic adipocytes, but few preadipocytes per gram of 
tissue [20] with a lower differentiation capability compared 
to SAT [21–24].

Triglyceride turnover in WAT is determined by the bal-
ance between lipid storage and lipid removal [3], and dif-
ferent turnover rates between SAT and VAT may cause 
metabolic complications in obesity [25]. Lipids are stored 
in adipocytes by esterification of free fatty acids (FFAs) and 
glycerol to form triglycerides, and FFAs are released from 
fat cells into the bloodstream through triglyceride hydroly-
sis (lipolysis). The adverse metabolic impact of visceral fat 
has been attributed to greater mobilization of FFAs into the 
portal circulation, impairing liver metabolism and leading to 
systemic IR [26]. Particularly, higher triglyceride turnover 
and lipolytic rates in response to catecholamines have been 
shown in VAT versus SAT in humans. Moreover, visceral 
adipocytes show lower sensitivity to the anti-lipolytic effect 
of α2-adrenergic receptor (AR) agonists and insulin com-
pared with subcutaneous adipocytes [27]. With respect to 
metabolic differences, Virtanen et al. demonstrated that, in 
the absence of significant differences in tissue blood flow, 
insulin-stimulated glucose uptake was higher in VAT com-
pared to SAT both in normal-weight and obese subjects [28]. 

On the other hand, Lundgren et al. showed that glucocorti-
coids exerted a marked suppression of glucose uptake and 
expression of insulin signaling proteins in visceral but not 
in subcutaneous adipocytes [29]. Studies on gene and pro-
tein expression have further highlighted the broad differ-
ences between SAT and VAT, showing that visceral ASCs 
and mature adipocytes from non-obese subjects produce 
more eotaxin, VEGF, IL-6, IL-8, and MCP-1 compared to 
subcutaneous cells [30–32]. Thus, VAT has a propensity 
to promote inflammation, which explains the link between 
VAT expansion, increased secretion of pro-inflammatory 
cytokines, and impaired insulin signaling and action in cen-
tral obesity.

Adipose tissue‑derived stem cells (ASCs) 
in adipose tissue

In 2001, multipotent stem cells were identified in the vas-
cular fraction of adipose tissue (stromal vascular fraction, 
SVF) [33]. ASCs differentiate in vitro towards different line-
ages belonging to different embryonic origin also different 
from the mesoderm, such as the neurogenic lineage, thus 
showing multipotency [34]. The SVF was obtained after 
digestion of adipose tissue fragments with collagenase fol-
lowed by differential centrifugations [35, 36], and consists of 
a heterogeneous cell population, including circulating blood 
cells, fibroblasts, pericytes, endothelial cells, macrophages, 
and preadipocytes in different stage of differentiation. In 
2004, the International Fat Applied Technology Society 
(IFATS) adopted the term “adipose tissue-derived stem 
cells” (ASCs), to define plastic-adherent cells with multi-
lineage capacity isolated from the SVF of adipose tissue. 
However, during the procedure of SVF isolation, two addi-
tional fibroblast-like cell populations can be isolated from 
the floating layer, exhibiting the potential of unlimited self-
renewing proliferation, as well as of multiple differentiation 
potential along the mesenchymal lineage [2, 31].

In culture, ASCs express cell-surface markers similar to 
those expressed by mesenchymal stem cells (MSCs), includ-
ing CD105, CD90, and CD44. Although an exact phenotypic 
characterization of ASCs is still in development, ASCs can 
be identified by the expression of CD49d that is otherwise 
absent in non-adipose MSCs cultures [31]. However, there 
are still significant gaps in understanding the origin and 
in vivo location of ASCs, since there is no marker that is 
uniquely associated with undifferentiated ASCs [26]. From 
studies in rodents, it has been suggested that adipocytes 
descend from a pool of proliferating progenitors that are 
already committed, either prenatally or early in postnatal 
life [37]. In a recent study, perilipin-positive or adiponectin-
positive preadipocytes were found at embryonic day 16.5 in 
adipose tissue, and these cells underwent active proliferation 
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until birth. Moreover, these preadipocytes resided as clus-
ters and were distributed along growing adipose vasculatures 
[38]. Importantly, the embryonic preadipocytes exhibited 
considerable co-expression of stem cell markers, such as 
CD24, CD29, and PDGFRA, while a small portion of pread-
ipocytes were derived from PDGFRB-positive mural cells 
of the adipose vasculature, as a subset of both pericytes and 
capillary endothelial cells, distinct from the adult preadi-
pocytes present in the SVF. Thus, the adipose vasculature 
appears to function as a progenitor niche and may provide 
signals for adipocyte development [38]. In adipose tissue, 
perivascular stromal cells are organized in two discrete lay-
ers, the innermost consisting of pericytes positive for CD146 
and α-SMA and negative for CD34, and outermost repre-
sented by supra-adventitial ASCs negative for CD146 and 
α-SMA and positive for CD34, both showing adipogenic 
potential in vitro. Pericytes exhibit a stronger adipogenic 
potential, followed by the more numerous supra-adventitial 
ASCs. Moreover, only the α-SMA-positive cells seem to 
show multilineage differentiation ability, while the α-SMA-
negative cells can differentiate only into adipocytes [39].

In addition, evidence suggests that SAT and VAT have 
distinct metabolic properties probably due to inherent char-
acteristics of the ASCs that are resident in these fat depots 
[26]. Indeed, the distinct features of these cells are also 
maintained in vitro, since ASCs retain the memory of the 
depot of origin [21, 31, 36] and even the effect of drug treat-
ment in vivo, as shown in an animal model of metabolic 
syndrome [40].

Noteworthy, the multipotency attributable to ASCs is also 
referred to their ability to acquire a brown phenotype, thus 
giving rise to brown adipose tissue (BAT). The presence 
of BAT is essential to warrant energy balance in terms of 
heat production through fat burning, a critical event named 
thermogenesis that is typically mediated by mitochondrial 
uncoupling protein-1 (UCP-1) activation [41]. However, this 
property has a trend to weaken with obesity [42] and aging, 
and in the latter case, it achieves only 1% in adulthood [43]. 
The source of brown fat cells changes according to ana-
tomical locations; for instance, interscapular and perirenal 
BAT appear to be derived from myf5-expressing myogenic 
precursors; meanwhile, BAT within WAT appears to derive 
from myf5-negative cells and to have different features, such 
as greater sensitivity to β3-adrenergic stimulation and cold 
exposure [44–46]. In addition, it has been reported that in 
specific adult human WAT depots, such as the periadrenal 
fat, two distinct brown and white adipose lineages coexist 
and that upon the local hormone condition as in the case of 
catecholamine-secreting pheochromocytoma, the equilib-
rium among the two lineages will lead toward the expansion 
of BAT or WAT, respectively [47].

As previously mentioned, BAT is a metabolically active 
tissue whose activity is associated with improved glycemic 

status in healthy individuals regardless of age, sex, and adi-
posity. The ability of BAT to regulate glucose homeostasis is 
maintained in the basal state (i.e., fasting and thermoneutral-
ity) and is accelerated by insulin and cold exposure that are 
known stimuli able to enhance glucose disposal [45]. In light 
of this evidence, findings from cross-sectional investigations 
observed that BAT functions correlate with clinical indexes 
of cardiometabolic health [41], thus considering this tissue 
as a potential target for the treatment of obesity and metabolic 
diseases. Therefore, it has been hypothesized that a metaboli-
cally healthy condition could depend on whole-body activ-
ity of BAT. However, to date, results obtained from mice and 
human studies regarding BAT distribution in both SAT and 
VAT are controversial. In particular, it has been observed that 
the expression of browning genes in obese mice is greater in 
SAT rather than VAT, while an opposite pattern of browning 
mediators (i.e., UCP-1, PPARG1A, etc.), with VAT having 
higher expression than SAT, was observed in humans with 
severe obesity [48, 49]. Consistently with previous results 
obtained from obese women [50], recent data from severe 
obese subjects reported a simple correlation between resting 
energy expenditure (REE) and waist, a measure of VAT, and 
identified a BAT-related or ‘brite’ signature in visceral depot 
in association with increased mitochondrial biogenesis mark-
ers [51]. These data suggest that increased REE and browning 
in metabolically complicated severe obesity could represent 
an effort to counteract further weight gain. Conversely, Lim 
J. et al. have recently observed that UCP-1 mRNA levels in 
VAT were significantly higher than in SAT in both non-dia-
betic and diabetic obese patients [52]. Moreover, in agreement 
with the previous report [53], a negative correlation between 
UCP-1 mRNA expression in SAT and several obesity-related 
metabolic parameters (i.e., BMI, HOMA-IR, visceral fat area, 
insulin, etc.) was noted in obese individuals [52]. In VAT from 
obese subjects, mRNA levels of UCP-1 were found to be 
inversely correlated with the VAT/SAT ratio, fasting glucose, 
and triglycerides, thus suggesting that visceral obesity may 
be aggravated when UCP-1 is down-regulated in VAT [52]. 
Finally, these results suggest that depot-specific patterns of 
UCP-1 expression in human WAT could be a pathognomonic 
feature of human obesity and obesity-related metabolic dis-
eases. Nevertheless, the extent of ‘brite’ signature in both SAT 
and VAT needs to be still elucidated in human obesity.

Adipose tissue expandability

The World Health Organization (WHO) defines obesity 
as a complex metabolic disorder with multifactorial etiol-
ogy, characterized by adipose tissue expansion in response 
to excess caloric intake and defined by a body mass index 
(BMI) > 30  kg/m2 [54]. However, the risk for obesity-
related comorbidities is not uniform, since cardiometabolic 
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abnormalities develop with a different extent in obese indi-
viduals with the same degree of BMI [55]. IR, T2D, and car-
diovascular disease (CVD) are less likely to develop when 
fat accumulation occurs in the lower body (gluteo-femoral 
depots). In contrast, upper body adipose tissue expansion 
(abdominal depot) is characterized by high risk to develop 
cardiometabolic diseases [8, 9]. Several studies showed that 
the determinant of increased cardiometabolic risk is not the 
degree of obesity per se, but the distribution of fat and, in 
particular, its accumulation in visceral compartment and 
insulin-sensitive organs or tissues [56]. In WAT, the capac-
ity to store and mobilize triglycerides is subjected to broad 
region-specific differences. SAT has a greater storage capac-
ity as compared to VAT and is the first depot responding to 
lipid excess. However, in human subjects, the capacity of 
SAT to store lipids is limited, such that when this limit is 
exceeded, storage of lipids in VAT occurs [57, 58] (Fig. 1). 
Thus, although the triglyceride storage capacity of SAT is 
higher than VAT, in subjects with expansion of central or 
visceral adipose tissue and classified as metabolic unhealthy, 
the lipid turnover is higher in VAT than SAT [59]. In addi-
tion, using radiocarbon dating methods to investigate tri-
glyceride storage, Spalding et al. provided evidence that 
the impact of progressively higher BMI is selective only 
for VAT and that lipid turnover in SAT is not influenced by 
different degrees of BMI. Indeed, excessively obese indi-
viduals had a visceral triglyceride age in VAT higher than 
healthy subjects, due to a lower lipid removal capacity, while 
no difference was observed in SAT between healthy and 
unhealthy subjects [58]. These findings support the impor-
tance of the adipose tissue expandability, highlighting that 
ectopic fat deposition is a result of an insufficient increase 
in the number and size of SAT adipocytes (Fig. 1). Indeed, 
differences in depot-specific lipid accumulation depend on 
hyperplasia and hypertrophy or the combination of both 
[60]. In obesity-prone C57BL/6 mice under high-fat diet, 
during the initial phase of obesity, SAT expands through 
hyperplasia, while hypertrophy preferentially occurs in VAT 
[61]. However, in AdipoChaser mice, an inducible labeling 
model of adipogenesis in vivo where the formation of new 
adipocytes is tracked by the expression of β-galactosidase, a 
high capacity for adipogenesis at more prolonged stages of 
high-fat diet was apparent in VAT, whereas SAT maintained 
an extremely low rate of adipogenesis [60]. These results 
have been confirmed in humans, supporting the concept that 
morbid obesity results from impaired adipogenic capability 
of SAT, with a limited hypertrophy of VAT cells displaying 
a pathological expansion through adipogenesis [62, 63].

Interestingly, regional differences in lipid storage ability 
in obesity could also be related to a specific genetic back-
ground. It is well known that both SAT and VAT express a 
similar set of genes whose expression levels change accord-
ing to local distribution and BMI [23, 64]. As recently 

demonstrated, VAT from obese adolescent females shows an 
aberrant methylation profile of genes involved in the insulin 
signaling pathway (i.e., PI3K/Akt) and mitochondrial func-
tion (i.e., TFAM) as compared to VAT from lean controls, 
an event that promotes adipose tissue dysfunction [64]. In 
addition, specific single-nucleotide polymorphisms (SNPs) 
may affect VAT oxidative capacity, particularly during fat 
expansion. In particular, obese carriers of specific SNPs in 
antioxidant defense genes, such as superoxide dismutase and 
catalase, show an enhanced body fat distribution as well as 
a wide visceral area [65]. Accordingly, a recent large-scale 
genome-wide association study (GWAS) performed on VAT 
from individuals with different grades of BMI found a new 
polymorphism in hydroxymethylbilane synthase (HMBS, 
rs1799993), a gene involved in adipogenesis via modula-
tion of mitochondrial respiratory activity [66], which may 
stimulate adipocyte differentiation and VAT expansion 
[67]. Similarly, Wang et al. found significant associations 
of VAT and VAT/SAT ratio with genetic variations in rs671 
of aldehyde dehydrogenase-2 (ALDH2) and rs4846567 
near lysophospholipase-like 1 (LYPLAL1), genes typically 
involved in mitochondrial function and lipid metabolism, 
as well as in rs17782313 near melanocortin 4 receptor 
(MC4R), a gene known to predict the individual suscepti-
bility to obesity [68]. Furthermore, data derived from a large 
genetic study support the hypothesis that VAT biology is 
indeed linked to a detrimental metabolic profile [69], since 
202-variant and 144-variant polygenic scores were associ-
ated with higher VAT/SAT ratio and an unfavorable cardio-
metabolic risk [70]. Among all these candidate genes, new 
49 loci were recently discovered to be associated with waist-
to-hip ratio (i.e., FAM13A rs9991328; FGFR4 rs6556301; 
BMP2 rs979012, etc.), many of which are implicated in 
adipogenesis, angiogenesis, transcriptional regulation, and 
IR, as observed in a recent analysis of genetic architecture 
performed in 224,459 individuals [71]. Moreover, some 
genetic variants linked to obesity could also be affected by 
sex dimorphism as exemplified by a genome-wide analy-
sis in which a significant association between rs1659258 
variant at chromosome 2 and higher VAT and altered lipid 
profile (i.e., lower HDL) was observed in women but not 
in men [72]. Therefore, these data support the concept that 
metabolic abnormalities during obesity may derive not only 
from a limited expandability of SAT, but also from a genetic 
susceptibility of VAT to respond to energy overload with 
a compromised insulin sensitivity [73], alterations of fatty 
acids metabolism [68, 73], impaired oxidant species clear-
ance [65], and enhanced adipogenesis [67, 71]. Other her-
itable traits could be involved in VAT-related changes in 
adiposity and metabolic derangement, including the fat mass 
and obesity-associated (FTO) gene, whose rs9939609 vari-
ant was recently found to correlate with body fat distribution 
and specific expansion of visceral fat [74].
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A recent study has also highlighted the critical role of 
inherent features of adipogenic precursor cells in determin-
ing the rate of in vivo adipogenesis and differences in tis-
sue expandability of various fat depots. Indeed, in obese 
adolescents with high VAT/SAT ratio, the lack of expand-
ability of SAT, as assessed by measuring the preadipocyte 
adipogenic rate in vitro, correlated with down-regulation of 
key lipogenic/adipogenic genes and increased VAT accumu-
lation [75]. Therefore, based on the fat depot expandability, 
two obesogenic phenotypes have been identified: “healthy 
obesity” (metabolic healthy obese, MHO), i.e., obese sub-
jects without metabolic disease, and “unhealthy obesity” 
(metabolic unhealthy obese, MUHO), i.e., obese subjects 
with expansion of VAT who develop metabolic alterations 
[76]. Hence, the identification of both adiposity subgroups 
is necessary and useful to predict the development cardio-
metabolic diseases.

During the past decade, we and others have shown that 
ASCs possess intrinsic depot-specific characteristics in 
terms of gene expression patterns and biological features 
[31, 36, 77], yet how ASCs mediate the biological machin-
ery that supports expandability of the adipose tissue is not 
fully understood. Indeed, understanding the mechanisms 
controlling ASCs differentiation into mature adipocytes may 
provide key insights into SAT/VAT expansion. Thus, MHO 
or MUHO may be characterized by different molecular path-
ways able to foster or impair adipogenic differentiation of 
ASCs from distinct fat depots. Knowledge of these pathways 
may have important implications for clinical interventions 
and drug development in obesity-related metabolic diseases.

Molecular pathways involved in recruitment 
and adipogenic differentiation of ASCs

Wingless‐type (Wnt) signaling

Wnt proteins play key roles in embryonic development by 
regulating the staminal precursor’s fate and critical steps 
of metabolic processes [78]. Research conducted over 
the past decade has established the Wnt/β-catenin signal-
ing pathway as an important player in adipocyte differ-
entiation both in vitro and in vivo. There are 19 proteins 
belonging to the Wnt family, and these can activate differ-
ent signaling molecules through autocrine and paracrine 
mechanisms according to canonical (β-catenin-dependent) 
or non-canonical (β-catenin-independent) pathways. Par-
ticularly, WNT1, WNT6, WNT10A, and WNT10B act in 
a β-catenin-dependent fashion in adipose tissue homeosta-
sis as potent inhibitors of adipogenesis through prevention 
of the induction of master adipogenic regulators, such as 
CEBPA and PPARG [79]. WNT10B is the best prototype for 
the endogenous inhibitory Wnt, whose expression is higher 

in preadipocytes and stromovascular cells and then is rap-
idly suppressed following induction of adipogenesis [80]. 
In this regard, it has been shown that the adipose-specific 
expression of Wnt10b also protects against genetic obesity 
and counteracts adipose tissue inflammation, as observed 
in obese mice with leptin deficiency and ectopic agouti 
expression [81]. Consistent with this, the previous findings 
have provided evidence that non-synonymous variants of 
WNT10B (C256Y) exist in the human population, resulting 
in loss of protein function which in turn prevents the inhibi-
tion of adipogenesis and can induce early onset obesity [82]. 
In addition, two single-nucleotide polymorphisms (SNP) in 
WNT10B (rs4018511, rs10875902) were found to be asso-
ciated with BMI and body weight in male individuals of a 
case–control Belgian population [83]. In keeping with these 
findings, lower expression of Wnt10b in skeletal muscle, 
SAT, and derived ASCs of obese Zucker rats could trigger 
the enhancement of in vitro adipogenesis of both muscular 
and adipocyte precursors, resulting in SAT expansion and 
intermuscular accumulation of adipose tissue in vivo [84] 
(Table 1). However, whether the unhealthy adipose tissue 
expansion is fostered by an impaired expression of Wnt10b 
in fat and/or skeletal muscle precursors or due to polymor-
phisms in Wnt10b with its loss of function is not entirely 
clear.

A large body of evidence supports the anti-adipogenic 
role of canonical WNT proteins, but some studies reported 
controversial data regarding the implication of non-canon-
ical WNT molecules in adipocyte function. In particular, 
both β-catenin-independent Wnt5a and Wnt5b are expressed 
in undifferentiated adipose cells and appear to be potent 
enhancers of adipogenesis by stimulation of PPARG and adi-
pocyte Protein 2 (aP2) [85]. WNT5A has a stimulatory effect 
in the early phase of adipogenesis, since Wnt5a is down-
regulated 12 h after induction of differentiation in 3T3-L1 
preadipocytes, and its knockdown results in decreased adi-
pogenesis and reduced expression of key regulators of adi-
pogenesis, such as PPARG and CEBPA [85, 86]. WNT5B, 
a paralog of WNT5A, is up-regulated during adipocyte dif-
ferentiation with the highest expression at day two; overex-
pression of Wnt5b significantly stimulated adipogenesis in 
murine preadipocytes [87, 88]. To date, data regarding the 
role of WNT5A in adipogenesis have yielded conflicting 
conclusions (Table 1). In vitro data ascribed to WNT5A an 
anti-adipogenic effect both when it was genetically depleted 
in 3T3-L1 cells [86] and when it was administered to rat 
ASCs, leading to suppression of lipid accumulation [89]. In 
contrast, other reports highlighted that any in vivo genetic 
manipulation of Wnt5a, in terms of abrogation or upregula-
tion of gene expression, did not impair body weight, body fat 
mass, adipocyte size, and expression of adipogenic markers 
in visceral depots of diet-induced obese mice, but affected 
adipose tissue inflammation and metabolic dysfunction [90]. 
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Table 1   Changes in main molecular determinants involved in recruitment and adipogenic differentiation of ASCs according to presence or 
absence of obesity and fat depot: in vivo/ex vivo and in vitro results

Markers Species In vivo/ex vivo
Obese vs lean

In vivo/ex vivo
SAT vs VAT of obese

In vitro 
ASCs, adipocytes differentiated from 
ASCs(d-ASCs),
Isolated adipocytes

WNT signaling
WNT10B
 mRNA Mouse ↓ in SAT of obese vs lean [84] – ↓ in ASCs from SAT of obese vs lean 

[84]
WNT5A
 mRNA Human ↑ in VAT of obese vs lean [90, 91] ↓ in SAT vs VAT [90, 91] ↑ in ASCs from VAT vs VAT adipocytes 

of obese [91]
SFRP5
 mRNA Human ↓ in VAT of obese vs lean [91]

Mouse ↓ in VAT of obese vs lean [97]
↑ in VAT of obese vs lean [98]

↓ in SAT vs VAT [98] ↓ in ASCs from SAT vs SAT adipocytes 
[98]

SFRP4
 mRNA Human ↑ in VAT of obese vs lean [94] -
 mRNA/protein ↑ in d-ASCs from VAT vs SAT [136]

BMP signaling
BMP2
 mRNA Human ↑ in SAT and VAT of obese vs lean 

[114]
↓ in SAT vs VAT [114] ↑ in ASCs from VAT vs SAT of obese 

[114]
↑ in adipocytes from VAT vs SAT of 

lean [114]
↑ in adipocytes from SAT vs VAT of 

obese [114]
↑ in ASCs vs d-ASCs [114]

BMP4
 protein Human - - ↓ in ASCs vs d-ASCs from SAT of 

obese [116]
WISP2
 mRNA Human ↑ in SAT of obese vs lean [115]

↑ in VAT of obese vs lean [121]
↑ in SAT vs VAT [115]
↑ in SAT vs VAT [121]

↑ in ASCs vs d-ASCs from SAT [115]

SIRT
SIRT1
 mRNA Human ↓ in SAT of obese vs lean [131, 132]  ↔ in SAT vs VAT [132] ↓ in ASCs from VAT of obese vs lean 

[23]
 mRNA/protein ↓ in VAT of obese vs lean [23, 131] ↓ in d-ASCs from VAT of obese vs lean 

[23]
SIRT2
 mRNA Human ↓ in SAT of obese vs lean [132]

 ↔ in SAT and VAT of obese vs lean 
[131]

↓ in VAT of obese vs lean [23]

 ↔ in SAT vs VAT [131]

 mRNA/protein ↓ in ASCs from VAT of obese vs lean 
[23]

↓ in d-ASCs from VAT of obese vs lean 
[23]

SIRT3
 mRNA Human ↓ in SAT of obese vs lean [132]

 ↔ in SAT and VAT of obese vs lean 
[131]

 ↔ in SAT vs VAT [131] -

SIRT6
 mRNA  ↔ in SAT and VAT of obese vs lean 

[131]
–
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However, an adipose tissue comparative analysis obtained 
from obese individuals found that gene and protein levels of 
WNT5A were significantly elevated in VAT rather than SAT 
(Table 1) [90, 91] supporting the observations of an asso-
ciation between increased expression of Wnt5a levels and 
enhanced inflammation in visceral depot [90]. Indeed, obese 
subjects with unhealthy expansion of the adipose tissue 
exhibit a specific phenotype, with fat depots characterized 
by hypertrophic adipocytes, hypoxia, fibrosis, and accumula-
tion of pro-inflammatory macrophages [92]. In this setting, 
impaired ASCs’ differentiation into mature adipocytes may 
underly an unhealthy adipose tissue expansion. On the other 
hand, WNT5A expression was significantly higher in SAT 
macrophages of obese as compared to lean subjects, and the 
conditioned medium from a macrophage cell line inhibited 
in vitro adipogenesis of 3T3-L1 preadipocytes via WNT5A, 

thus suggesting that this molecule could potentially concur 
to determine the limited expandability of SAT [93]. Inability 
to expand SAT is an important determinant of IR in obesity, 
as well as accumulation of VAT per se. In this scenario, 
a family of WNT antagonists, the secreted frizzled-related 
proteins (SFRPs) participate in adipose tissue homeostasis 
by sequestering WNT molecules, thus affecting adipogenesis 
and inflammation of the adipose tissue [94].

SFRP5 is considered as a novel adiposity indicator, since 
its protein levels vary according to BMI, waist–hip ratio, 
body fat proportion, and lipid profile [95, 96]. However, 
changes in SFRP5 occurring in obesity show conflicting 
data. Several studies have shown that while WNT5A gene 
expression levels in VAT were higher in obese patients, 
mRNA or circulating levels of SFRP5 were significantly 
reduced [91, 95, 97] (Table  1). However, most studies 

↑, increase; ↓, decrease; ↔ , no difference;– not available
BMP bone morphogenetic proteins, FAM13a family with sequence similarity 13 member A, miRNAs microRNAs, SAT subcutaneous adipose 
tissue, SFRP secreted frizzled-related proteins, SIRT sirtuin proteins, VAT visceral adipose tissue, WAT​ white adipose tissue, WNT wingless‐type 
proteins, miRNAs microRNAs

Table 1   (continued)

Markers Species In vivo/ex vivo
Obese vs lean

In vivo/ex vivo
SAT vs VAT of obese

In vitro 
ASCs, adipocytes differentiated from 
ASCs(d-ASCs),
Isolated adipocytes

 mRNA/protein Human ↓ in VAT of obese vs lean [140]
 protein Mouse ↓ in ASCs vs d-ASCs [131]

Insulin signaling
SLC2A4
 protein Human – ↓ in adipocytes of obese insulin-resistant 

vs lean [154]
 mRNA/protein ↑ in d-ASCs from SAT vs VAT [23, 24]

WISP1
 mRNA Human ↑ in VAT of obese vs lean [152] ↓ in SAT vs VAT [148, 152]

mRNA/protein ↓ in ASCs vs d-ASCs from SAT [148]
FAM13A
FAM13A
 mRNA/protein Mouse ↓ in VAT of obese vs lean [165] ↓ in ASCs vs adipocytes from VAT 

[165]
 mRNA/protein ↓ in VAT of obese vs lean [169]  ↔ in SAT vs VAT [169]
 mRNA Human ↓ in SAT of obese vs lean [169]

Genetic variants
rs3822072/ rs9991328
 mRNA Human ↑ in SAT vs VAT [169] ↓ in ASCs vs d-ASCs [169]

↓ in ASCs vs adipocytes from SAT 
[169]

 miRNAs
 miR17-5p
 miR-132
 miR-378
 miR-181a-5p
 miR-23a-3p

Human ↓ in VAT of obese vs lean [194]
↓ in VAT of obese vs lean [194]
–
↓ in VAT of obese vs lean [192]
↓ in SAT and VAT of obese vs lean 

[192]

↓ in SAT vs VAT [187]
↓ in SAT vs VAT [194]
-
↓ in SAT vs VAT [192]
↓ in SAT vs VAT [192]

–
–
↑ in d-ASCs from SAT vs VAT [191]
–
–
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indicate that Sfrp5 expression is induced during adipogen-
esis, becoming higher in isolated adipocytes than in ASCs 
of WAT from lean animals, and increasing dramatically 
when obesity ensues [95, 98–101]. Moreover, a causal 
link between elevated expression of SFRP5 and fat mass 
expansion has been suggested, since, in rodents, differences 
in Sfrp5 gene expression observed in biopsies of VAT at 
7 week of age (before exposure to a high-fat diet) correlated 
with increased adiposity after 8 week on a high-fat diet [98]. 
However, expression of Sfrp5 was high in the visceral depot, 
but was decreased under obesogenic diet, and its genetic 
abrogation appeared to exacerbate serious obesity-related 
metabolic dysfunction [97]. These discrepancies may be due 
to the different stages in which the adipose tissue remod-
eling has been assessed and to potential differences in obese 
rodent models vs. humans. As noted, the adipose tissue 
expansion involves adipocyte hyperplasia and hypertrophy, 
followed by subsequent inflammatory consequences that 
arise from excess adipose tissue. It could be thus hypoth-
esized that, in the early phase of obesity, ASCs, and hyper-
plastic adipocytes secrete more SFRP5, but less WNT5A, 
and that a high ratio of SFRP5/WNT5A fosters the adipose 
tissue expansion. As adipocytes reach their maximal storage 
capacity, cell death occurs leading to activation of inflam-
mation and fibrosis [102]. In this late phase, hypertrophic 
adipocytes and macrophages may secrete more WNT5A, but 
less SFRP5, leading to activation of Wnt signaling, which 
in turn increases inflammation and impairs insulin signaling 
bringing about IR. These changes in the WNT5A–SFRP5 
axis could potentially mark the limited expansion of SAT, 
thus promoting the development of unhealthy obesity with 
increased fat accumulation in the visceral depot (Fig. 1).

Bone morphogenetic proteins (BMPs) signaling

Wnt signaling is necessary but not sufficient to induce 
commitment of ASCs, since additional signals need to be 
turned on or repressed to start adipocyte differentiation. The 
bone morphogenetic proteins (BMPs) have been shown to 
play an important role for the induction of both white and 
brown adipogenesis. The BMPs belong to the transforming 
growth factor β (TGFβ) superfamily, a group of homolo-
gous signaling proteins that play different and important 
roles in embryogenesis, organogenesis, cell proliferation, 
and lineage-specific differentiation of MSCs [103, 104]. 
There are at least 14 types of BMPs in humans and rodents, 
and each of them exerts distinct but overlapping biological 
functions [105]. Among BMPs, BMP2 and BMP4 have been 
reported to play a role in the induction of white adipogenesis 
[106–108], while BMP7 appears to be a regulator of brown 
adipogenesis [109].

Several studies have demonstrated that BMP2 is 
involved in promoting the commitment of MSCs in the 

white adipogenic lineage. The role of BMP2 in promoting 
adipogenic differentiation has been initially proven using 
in vitro cell systems such as murine 3T3-L1 preadipocytes 
[106], murine C3H10T1/2 cells [110], and human mesen-
chymal cells [111, 112]. Later, Jin et al. demonstrated that 
BMP2 can induce adipogenesis in vivo, since ablation of 
Schnurri2, a BMP2-activated gene that induces the expres-
sion of PPARG2 in cooperation with SMAD1/4, reduced 
WAT in mice; moreover, in vitro adipogenic differentiation 
of Shnurri2−/− mouse embryonic fibroblasts was prevented 
[113].

More recently, by analyzing 547 paired SAT and VAT 
samples of subjects with varying levels of BMI, Guiu-Jurado 
and colleagues showed that adipose tissue BMP2 mRNA 
levels were higher in VAT compared to SAT and related to 
obesity. In addition, in subjects with morbid obesity, BMP2 
mRNA levels were found to be higher in visceral SVF as 
compared to subcutaneous stromal cells. These findings sug-
gest that, with positive energy balance, BMP2 expression 
may contribute to partition excess circulating triacylglycerol 
into visceral fat depots and thus predispose to development 
of metabolically unhealthy obesity [114] (Fig. 1; Table 1). 
Following binding to its receptor, BMP4 activates the down-
stream transcription factor SMAD4 and induces terminal 
differentiation of preadipocytes by stimulating transcription 
of PPARG. Specifically, BMP4 induces the dissociation of 
an intracellular complex consisting of the PPARG tran-
scriptional activator zinc finger protein-423 (ZNF423) and 
the mesenchymal cell canonical WISP2, thereby allowing 
nuclear entry of ZNF423, PPARG induction, and consequent 
commitment of precursor cells into the adipocyte lineage 
[115]. Thus, BMP4 signaling and its cross-talk with canoni-
cal WNT/WISP2 are an essential component of the induc-
tion of adipogenesis and could be considered as a potential 
mechanism involved in pathological expansion of WAT.

On the other hand, human studies showed that alterations 
in the BMP4 pathway may have negative effects in subcu-
taneous adipogenesis, with inability to recruit and differen-
tiate new adipocytes, thus promoting hypertrophic obesity 
and dysfunctional adipose tissue with subsequent risk of 
developing metabolic diseases [115–117]. Indeed, inap-
propriate expansion of SAT may result from preadipocyte 
resistance to BMP4 as a consequence of increased secretion 
of Gremlin1 (GREM1) [116] (Fig. 1), a potent extracel-
lular and intracellular inhibitor of BMP4 [118, 119], also 
involved in fibrosis and arthritis development [120]. While 
cellular BMP4 transcript and protein levels were reported 
to be increased in hypertrophic obesity, the BMP4-induced 
recruitment and differentiation of new adipose cells may be 
antagonized by GREM1, which is up-regulated in this con-
dition [116] (Table 1). In a secretome analysis of several 
human adipokines from SAT, comparing lean and obese 
subjects, WISP2 turned out as a gene that is up-regulated 
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in obesity [121] (Table 1). Indeed, WISP2 is a recently 
described adipokine that is highly expressed in early fat 
precursor cells, as well as in human abdominal SAT of sub-
jects with hypertrophic obesity, visceral fat accumulation, 
and IR [115]. Moreover, the WISP2 protein appears to be 
involved in the cross-talk between Wnt and BMP4 signaling 
pathways, since WISP2 prevented adipogenic commitment 
and PPARG-dependent differentiation by retaining ZNF423 
in the cytosol, a key transcriptional activator of PPARG, and 
directly inhibiting PPARG activation [115].

Taken together, these findings support the role of 
impaired BMP2 and BMP4 signaling in hypertrophic obe-
sity, allowing the adipose precursor cells to remain in an 
uncommitted state and fostering fat storage outside SAT.

Sirtuins

The family of enzymes known as Sir2-related proteins or 
sirtuins are highly conserved NAD-dependent deacetylases 
and/or ADP ribosyl transferases that target histones, tran-
scription factors, and co-regulators, to adapt gene expression 
and metabolic activity in response to changes in cellular 
energy state [122]. There are seven mammalian sirtuins, 
SIRT1-7, which share a conserved central catalytic domain 
capable of binding NAD+, but have different N- and C- ter-
minal and display distinct subcellular localization suggest-
ing different biological functions [123]. SIRT1, SIRT6, and 
SIRT7 are localized in the nucleus. SIRT2 is the only mam-
malian sirtuin localized mainly in the cytoplasm, and con-
sistent with its role in cell cycle regulation, shuttles to the 
nucleus during the G2/M transition [124]. SIRT3, SIRT4, 
and SIRT5 are localized in mitochondria and regulate the 
activity of metabolic enzymes involved in oxidative dam-
age [125].

The sirtuin family is known to play a key role in the 
maintenance of glucose and lipid homeostasis, the control 
of insulin secretion and sensitivity, the promotion of fat 
mobilization, the regulation of oxidative stress and inflam-
mation, and the modulation of circadian clock in metabolic 
tissues [126]. Specifically, several studies have demonstrated 
a key role for SIRT1 and SIRT2 as cellular energy sensors 
and mediators of the beneficial effects of calorie restriction 
[127]. SIRT1 and SIRT2 are expressed in WAT and modu-
late adipogenesis by affecting the transcriptional activity of 
PPARG, the master regulator of this process [122]. In rodent 
preadipocytes, Sirt1 or Sirt2 overexpression limits adipocyte 
differentiation by inhibiting the nuclear receptor PPARG 
and genes mediating fat storage [128] and by increasing the 
ability of FOXO1 to repress PPARG transcriptional activ-
ity [124]. Consistent with the role of SIRT1 as a negative 
modulator of adipogenesis and lipogenesis in 3T3-L1 cells 
[128], mice moderately overexpressing Sirt1 were leaner 
than controls and more metabolically active, and displayed 

lower serum levels of cholesterol, pro-inflammatory adi-
pokines, insulin, and fasting glucose [129]. In addition, Sirt1 
adipocyte-specific knockout mice exposed to a prolonged 
high-fat diet developed an augmentation of epididymal fat 
due both to lipogenesis and adipogenesis, which was not 
seen in SAT [130]. Also in multiple human studies, an asso-
ciation between decreased SIRT1 [131, 132] and SIRT2 
[133] expression and obesity and/or T2D has been demon-
strated. In a recent study, we have extended these findings, 
showing that SIRT1 and SIRT2 expression was specifically 
down-regulated in the VAT in humans and inversely corre-
lated with BMI and waist circumference [23]. The observed 
obesity-related reduction of SIRT1/2 in VAT was found to 
be associated with reduced mRNA and protein levels of 
SIRT1 and SIRT2 also in the VAT ASCs, and these cells 
displayed increased adipogenic potential with augmented 
rates of triglyceride accumulation, number of lipid drop-
lets, and capacity to generate new adipocytes in vitro [23]. 
In addition, stably forced expression of SIRT1 or SIRT2 in 
ASCs isolated from VAT of obese individuals limited their 
adipogenic potential, and was also associated with reduced 
expression of early and late transcriptional factors or mark-
ers of adipogenic differentiation (i.e., CEBPA, PPARG​, 
SLC2A4, ADIPOQ, FASN, and SREBF1C), highlighting a 
causal role of the reduction of SIRT1 and SIRT2 levels in the 
observed obese adipocyte phenotype. By contrast, in SAT, 
SIRT1 and SIRT2 mRNA levels were not correlated with 
either BMI or waist circumference, and the resident ASCs 
did not show any changes in expression levels of SIRT1 
and SIRT2 or lipogenesis/adipogenesis rates in obesity [23]. 
Furthermore, knockdown of SIRT1 or SIRT2 protein levels 
in ASCs from VAT of lean subjects fostered adipocytes dif-
ferentiation [23]. These findings indicate that reduced SIRT1 
and SIRT2 expression occurs in a depot-specific and obesity-
related manner and is tightly linked to increased adipogenic 
differentiation of VAT ASCs [23] (Table 1).

As previously reported, Wnt/β-catenin signaling is an 
important regulator of adipocyte differentiation [79], and 
it is down-regulated by the family of SFRPs through the 
formation of inhibitory complexes [134, 135]. Interest-
ingly, in obese individuals, SFRP4 expression was found 
to be significantly increased in VAT but not in SAT, and 
this positively correlated with BMI and IR [23, 94]. More 
recently, Sfrp4 knockdown in preadipocytes isolated from 
epididymal adipose tissue of C57BL/6 J mice was shown 
to reduce lipid accumulation and adipocyte differentiation 
in association with diminished mRNA levels of adipogenic 
markers, including Pparg and Slc2a4 [23, 136]. Since 
SIRT1 deacetylates SFRPs and represses their expression, 
thus activating Wnt signaling and suppressing adipogenesis 
[137], it can be postulated that reduced levels of SIRT1 in 
VAT ASCs from obese subjects may increase SFRP4 levels 
that foster VAT expansion by early induction of adipogenic 
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transcription factors. All these findings suggest that SIRT1/2 
and SFRP4 may be identified as a key mechanism that pro-
motes the development of VAT through adipogenesis of 
resident ASCs.

Other sirtuins may be also involved in the adipose tissue 
metabolism and turnover. Among these, SIRT6 is induced 
by caloric restriction and has been recently implicated in the 
regulation of aging, genome stability, glucose homeostasis, 
and lipid metabolism [138]. Consistent with these results, 
SIRT1, SIRT3, and especially SIRT6 mRNA levels were up-
regulated in SAT from severely obese patients undergoing 
bariatric surgery after 6 months of extensive weight loss 
[139] (Table 1). Although these studies suggest that SIRT6 
could play a role in the adipose tissue, the exact function 
and mechanisms remain unclear. More recently, Kuang 
et al. have shown that knockout of Sirt6 in mouse embry-
onic fibroblasts increased phosphorylation and acetylation 
of FoxO1, which compromises the transcriptional activ-
ity of adipose triglyceride lipase (ATGL), a key lipolytic 
enzyme [140]. Moreover, loss of ATGL reduced lipolysis 
in adipocyte and was associated with increased adipose tis-
sue mass [141, 142], whereas its overexpression promoted 
opposite findings [143]. Thus, reduced Sirt6 expression in 
adipose tissue may impair ATGL function by regulating 
FoxO1 activity, fostering the adipose tissue expansion and 
obesity by lipid accumulation rather than adipocyte conver-
sion [140] (Table 1). Finally, a cross-talk between expression 
and activity of SIRT1 and SIRT2, and between SIRT1 and 
SIRT6 may exist [23, 140]. Indeed, a computational analy-
sis performed by Ingenuity Pathway Analysis has observed 
that SIRT1 seems to interact directly with SIRT2 and SIRT6 
[144]; moreover, this interaction was confirmed in vitro 
where the overexpression of SIRT1 or activation of SIRT1 
by resveratrol enhanced the expression of SIRT6 in murine 
adipocytes [140]. These findings indicate in SIRT1 and other 
sirtuins attractive therapeutic targets for treating obesity and 
obesity-related cardiometabolic diseases.

Insulin signaling

Insulin exerts a key role in regulating the adipose tissue 
development and function through activation of its tyros-
ine kinase receptor (INSR), which consists of two isoforms: 
INSR-B, the long isoform that is thought to be prevalent in 
post-mitotic and differentiated cells and is largely responsi-
ble for the metabolic action of insulin (i.e., glucose uptake, 
triglyceride accumulation) via AKT-dependent mechanisms; 
and INSR-A, predominantly expressed in undifferentiated 
cells and contributing to prenatal development and tissue 
growth, as well as in the biology of several human cancers 
[22]. Insulin promotes anabolic responses in the adipose tis-
sue by stimulating glucose and free fatty acid uptake, inhibit-
ing lipolysis, and stimulating de novo fatty acid synthesis. 

In addition, insulin regulates adipose tissue growth and 
differentiation by enhancing the gene expression of vari-
ous fat-specific transcription factors, including SREBF1C 
and PPARG [22]. However, several studies have shown that 
adipose tissue insulin sensitivity and responsiveness differ 
in relation to its anatomical site and different grading of 
BMI [24, 26, 36, 145, 146]. Indeed, insulin signaling is more 
rapidly and prominently activated in VAT than SAT with 
greater and earlier activation levels of the INSR, AKT, gly-
cogen synthase kinase-3 (GSK3), and extracellular signal-
regulated kinases (ERK1/2), as shown by our group [145]. 
In a later study, we clarified that depot-related differences 
in insulin signaling were due to innate characteristics of 
adipose cells rather than to extrinsic factors, such as tis-
sue microenvironment, local circulation, local innervation 
and/or heterogeneity in cellularity. After insulin stimulation, 
adipocytes differentiated from visceral stromal cells showed 
earlier and more transient kinetics of activation of multiple 
signaling intermediates, including the INSR, insulin recep-
tor substrate (IRS) proteins, AKT and ERK1/2, as well as 
significantly greater glucose transport rates than adipocytes 
derived from subcutaneous stromal precursors [36]. How-
ever, to date, the impact of these depot-specific differences in 
insulin signaling pathway in the regulation of adipogenesis 
and adipose tissue expansion in obesity is not fully clear.

Insulin is an important regulator of adipocyte differ-
entiation and function: even though it takes part only in 
the late phase of differentiation, it is essential to achieve 
a completely functional adipocyte phenotype in both fat 
depots [24]. In human ASCs, the presence of insulin did 
not modify the expression levels of adipogenic markers dur-
ing both the early and intermediate phases of adipogenesis, 
while it was found to be essential to achieve a completely 
functional adipocyte phenotype in the late phase of differ-
entiation [22, 24]. The insulin signaling is modulated by 
the Wnt signaling pathway. The cross-talk between insulin 
and the Wnt signaling pathway occurs at multiple levels in 
murine preadipocytes, including the Wnt co-receptor LRP5 
(low-density lipoprotein receptor-related proteins 5) [147] 
and WISP1 (Wnt1-inducible signaling pathway protein-1) 
[148] proteins. WISP1 is an adipokine released by mature 
human adipocytes, which may play a role in glucose homeo-
stasis, as well as in the pathophysiology of obesity and T2D 
[148, 149]. Several results have demonstrated that WISP1 
mRNA levels in the adipose tissue are positively associated 
with fasting insulin levels and macrophage infiltration in 
the adipose tissue, and are associated negatively with insu-
lin sensitivity measured by a hyperinsulinemic–euglycemic 
clamp [150–152]. WISP1 is more expressed in VAT in both 
mice and humans [148, 152] in contrast to WISP2, which is 
preferentially expressed in SAT [115] (Table 1). Moreover, 
anti-apoptotic, anti-autophagy, and proliferative effects of 
WISP1 are mediated trough the PI3K/AKT pathway [153], 
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indicating that WISP1 may be regulated by insulin. Indeed, 
increased insulin-stimulated gene expression of WISP1 was 
abolished when human adipocytes were pretreated with 
PI3K inhibitors, indicating that chronic exposure to insulin 
increases WISP1 expression [148]. In addition, in human 
ASCs, WISP1 mRNA and protein levels increased during 
adipocyte differentiation [148]. Thus, it is possible that high 
circulating insulin levels under conditions of IR, as in mor-
bid obesity, may foster WISP expression and thus further 
promote VAT expansion.

The glucose transporter type 4 (GLUT4) is a key effec-
tor of insulin action. GLUT4 protein levels were found to 
be reduced in adipose cells of both insulin-resistant obese 
and diabetic subjects [154] (Table 1). The limited insulin 
responsiveness of the adipose tissue in these conditions 
appears to lead to an increase of adipocyte size in the pres-
ence of higher serum insulin concentrations, thus promoting 
the development of adipose tissue expansion [155]. Indeed, 
several studies reported a correlation between adipocyte 
size and IR thus confirming the “lipid spillover” hypoth-
esis, since hypertrophic adipocytes, especially in SAT, are 
no longer able to store further lipids, causing the overflow of 
fatty acids into ectopic sites, resulting in IR [28, 156, 157]. 
Thus, impaired insulin signaling in the adipose tissue may 
further favor the development of hypertrophic SAT, expan-
sion of VAT, and adverse metabolic consequences including 
T2D and CVD.

Family with sequence similarity 13 member 
A (FAM13A)

Overall adiposity and body fat distribution are both heritable 
traits and well-established predictors of adverse cardiometa-
bolic and respiratory outcomes, including IR and T2D [158]. 
While IR is often a consequence of excess adipose tissue, 
some forms of IR develop without overweight/obesity or 
are associated with regional lack of fat. Lipodystrophy is a 
condition characterized by varying degrees of adipose tis-
sue deficiency due to impaired capacity of peripheral fat 
to expand under a positive energy balance, leading to lipid 
accumulation at ectopic sites (e.g., skeletal muscle, liver), 
with severe dyslipidemia and increased risk of hypertension 
and T2D [159]. This indicates a clear link between limited 
adipose tissue expandability and adverse cardiometabolic 
outcomes, underlining the notion that expandable and meta-
bolically flexible adipose tissue is essential for health.

Recently, using a genome-wide association study 
(GWAS) of large cohorts, several groups independently 
identified a cluster of common risk variants that are associ-
ated with impaired adipose tissue expandability, unfavorable 
body fat distribution and severe IR [160–162]. A number 
of intronic SNPs associated with unfavorable body fat dis-
tribution are located in or near the family with sequence 

similarity 13 member A (Fam13a) gene [162, 163]. One of 
these common non-coding variants of Fam13a (rs3822072) 
identified with GWAS has been associated with higher fast-
ing insulin and lower HDL-cholesterol levels [160, 164]. 
A second common non-coding Fam13a variant rs9991328 
(in high linkage disequilibrium with rs3822072) is highly 
associated with waist-to-hip ratio (WHR) adjusted for BMI 
[161]. Several studies have indicated that the adipose tissue 
is the primary site where Fam13a plays a key role in the 
pathological linkage between morbid obesity and adverse 
metabolic outcomes [165–169]. Fam13a modulates adipo-
cytes insulin signaling, showing a negative correlation with 
diet-induced obesity in mice [165] (Table 1). In a recent 
study, Lin X et al. provided in vivo and in vitro evidence 
supporting a key role of Fam13a in regulating glucose and 
lipid metabolism, pinpointing rs2276936 as the possible 
functional variant regulating hepatic FAM13A expression 
and the association with metabolic traits such as lower body 
fat, increased insulin sensitivity, and higher HDL-cholesterol 
[166]. Interestingly, the metabolic traits associated with 
rs2276936 were recapitulated in Fam13a knockout mice, 
showing less body weight gain following high-fat diet, 
increased lean mass, reduced fat mass, lower hepatic lipid 
accumulation, and improved insulin sensitivity, possibly by 
increased AMPK activity [166]. Moreover, siRNA-mediated 
knockdown of FAM13A in human mesenchymal stem cells 
resulted in increased expression of PPARG, CEBPA and 
SLC2A4, fostering adipocyte differentiation [167], while 
FAM13A overexpression caused apoptosis of preadipo-
cytes and largely blocked adipogenesis induced by a stand-
ard hormone cocktail [168]. Fathzade et al. have recently 
reported that some GWAS SNPs in the Fam13a locus, such 
as rs3822072 and rs9991328, were associated with IR traits 
(e.g., elevated fasting insulin levels, increased WHR, and 
body fat mass) and with FAM13A expression in SAT, but 
not in VAT. In men with metabolic syndrome and IR traits, 
FAM13A expression levels in SAT adjusted for BMI were 
positively correlated with WHR and fasting insulin, and 
inversely correlated with fat mass [169] (Table 1). These 
findings suggest that some Fam13a variants may predispose 
individuals to a normal body weight but with a metabolically 
unhealthy phenotype, while decreased FAM13A expression 
in SAT is associated with favorable adipose tissue develop-
ment and function. Compared to wild-type mice, despite 
increased body weight during high-fat diet, male Fam13a 
knockout mice showed a reduced VAT/SAT ratio, indicating 
a potential role of Fam13a perturbations in driving a shift 
of fat deposition away from visceral depots [169] (Table 1). 
The healthy obese phenotype exhibited by Fam13a knockout 
mice was due to increased ability of SAT to generate new 
adipocytes de novo, functionally active in depositing glucose 
and responding to insulin, which may help to meet the excess 
lipid storage needs. Indeed, FAM13A knockdown in both 
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human and mice SAT preadipocytes resulted in upregula-
tion of adipogenesis markers (e.g., CEBPA and PPARG) 
and increased generation of new adipocytes [169]. The pre-
cise molecular mechanism linking FAM13A to adipogen-
esis is unknown. However, FAM13A has previously been 
reported to activate the Wnt pathway, since, in human lung 
cancer, FAM13A knockdown significantly reduced the Wnt 
signaling activity [170]. Altogether, these results suggest 
that FAM13A disruption may promote adipocyte differen-
tiation by counteracting the anti-adipogenic effects of Wnt 
signaling.

microRNAs

microRNAs (miRNAs) are a family of small non-coding 
RNAs’ molecules containing approximately 19–22 nucleo-
tides that regulate gene expression at the post-transcriptional 
level by preventing translation of their target mRNAs or 
accelerating their decay via the RNA-induced silencing com-
plex [171]. Several studies provided evidence that miRNAs 
exist in different tissues and modulate a series of important 
processes, including early development, cell proliferation, 
differentiation, and apoptosis [172–174]. miRNAs also play 
a role in the adipose tissue development and its pathological 
expansion, by stimulating or inhibiting adipocyte differen-
tiation through fine-tuning of diverse signaling molecules 
and pathways [175–181]. The key role of miRNAs as stimu-
lators or inhibitors of murine and/or human adipogenesis 
has been reviewed in detail elsewhere [182–186]. However, 
some miRNAs exhibit a SAT- or VAT-specific expression 
pattern during the adipose tissue development and in human 
obesity. Indeed, a large number of miRNAs are expressed 
in human WAT, but only a few of them show different adi-
pose tissue levels in obese compared to lean subjects [183]. 
In addition, a gene expression analysis of 155 miRNAs in 
human paired omental and subcutaneous adipose tissue from 
overweight or obese subjects detected 106 miRNAs in both 
fat depots, of which only 16 were differentially expressed 
in a fat depot-specific pattern, showing higher expression 
in VAT than SAT [187] (Table 1). Among these miRNAs, 
miR-378 was shown to be involved in brown adipogenesis, 
leading to expansion of brown adipose tissue (BAT), but 
not WAT, as well as to resistance to both genetic and high-
fat diet-induced obesity [188]. miR-378 is generated from 
a precursor RNA and is located in the first intron of the 
PPARGC1B gene, with a positive regulation in adipogenesis 
[189, 190]. PPARG agonists, such as pioglitazone, increase 
the expression of miR-378 in human SVF cells [191]. Nota-
bly, miR-378 promoted adipogenesis of subcutaneous but 
not of visceral SVF cells, underlying a fat depot-specific 
regulatory role [191] (Table 1). Altogether, these findings 
suggest that increased miR-378 expression may be associ-
ated with an appropriate expansion of the available SAT 

adipose cells and thus with a healthy adipose tissue develop-
ment (Fig. 1). Among those miRNAs with a depot-specific 
pattern, miR-181a-5p and miR-23a-3p were also found to 
be significantly reduced in VAT from obese compared with 
non-obese controls, while no differences were observed in 
SAT according to a wide BMI range, from 25.7 to 43.7 kg/
m2 [192] (Table 1). Furthermore, miR-181a-5p and miR-
23a-3p expression levels were inversely correlated with adi-
posity (measured by BMI and waist circumference) in VAT, 
whereas this correlation was found only for miR-23a-3p in 
SAT. The same correlation was observed with both miR-
NAs and HOMA-IR [192]. Previous studies found that 
overexpression of miR-181a-5p in cultured porcine primary 
preadipocytes accelerated accumulation of lipid droplets, 
increased the amount of triglycerides, and fostered adipo-
cyte differentiation, whereas reducing miR-181a-5p levels 
had opposite effects [193]. On the other hand, Heneghan 
et al. found that omental and circulating levels of miR-17-5p 
and miR-132 were significantly decreased in obese indi-
viduals compared with non-obese subjects, and that miR-
17-5p expression levels were inversely correlated with BMI. 
Interestingly, the expression of these two miRNAs in VAT 
and blood from obese subjects correlated significantly with 
glycosylated hemoglobin, leptin, and fasting blood glucose 
[194] (Table 1). In vitro data indicate that overexpression of 
miR-17-5p in 3T3-L1 preadipocytes accelerated their adi-
pogenic differentiation via targeting the Wnt signaling cas-
cade effector Tcf7l2 [195]. However, additional studies will 
be needed to establish the molecular mechanism through 
which miR-181a-5p and miR-17-5p modulate the network 
of adipogenesis transcription factors and their potential role 
in human obesity and VAT expansion.

Conclusions

Studies of mouse and human adipose tissue provide strong 
evidence that the inability of SAT to recruit ASCs and pro-
mote their adipogenic differentiation in response to the 
demand for increased energy storage leads to inflamma-
tion of the adipose tissue, ectopic fat accumulation with 
unfavorable body fat distribution, IR, and adverse cardio-
metabolic and respiratory outcomes. In contrast, the ability 
of SAT to recruit new adipose cells is protective against 
cardiometabolic diseases, underlining the notion that an 
expandable and metabolically flexible SAT is essential for 
developing healthy obesity (Fig. 1). Adiposity and body fat 
distribution are both heritable traits, and thus, individuals 
with a genetic predisposition for unhealthy obesity exhibit 
their inability to expand SAT, a high VAT/SAT ratio, IR, 
dyslipidemia, and fatty liver. Multiple signaling pathways 
and master genes appear to mediate the link between the 
inability of SAT to expand appropriately and the unfavorable 
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body fat distribution. The Wnt/BMP pathway is one of such 
pathways, which allows the ASCs to remain in an uncommit-
ted state promoting fat storage outside SAT. Consistent with 
this concept, reduced adipose tissue expression of SIRT1 
and SIRT2 in human obesity is another key event, which 
occurs in a depot-specific manner, i.e., exclusively in VAT, 
and mediates an increased adipogenic potential of visceral 
ASCs. Hence, the SIRT1/SIRT2 and Wnt/BMP pathways 
are involved in VAT expandability in humans and could 
be considered as useful therapeutic targets to counteract 
unhealthy obesity. On the other hand, understanding how 
SAT can be turned into a suitable lipid storing is another 
major challenge that could help to counteract the adverse 
cardiometabolic consequences of VAT expansion. In this 
regard, FAM13A and miR-378 appear as newly identified 
regulators of fat distribution and metabolic traits through 
their ability to increase the recruitment and differentiation 
of subcutaneous ASCs, fostering SAT development; this 
could be particularly important when there is a demand for 
increased energy storage (Fig. 1). Further understanding of 
the mechanisms regulating in vivo recruitment and adipo-
cyte differentiation of ASCs in distinct adipose tissue depot 
and in healthy compared to unhealthy obesity could poten-
tially lead to identify novel therapeutic targets to favorably 
manage the excess lipid storage needs, and thus uncouple fat 
accumulation from the adverse cardiometabolic outcomes 
of obesity.
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