11 research outputs found

    B and T Immunoregulation: A New Insight of B Regulatory Lymphocytes in Autism Spectrum Disorder

    Get PDF
    Introduction: Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by a complex pathogenesis, by impairment social communication and interaction, and may also manifest repetitive patterns of behavior. Many studies have recognized an alteration of the immune response as a major etiological component in ASDs. Despite this, it is still unclear the variation of the function of the immune response. Aim: Our aim is to investigate the levels of immunological markers in peripheral blood of children with ASD such as: regulatory B and T cells, memory B and natural killer (NK) cells. Materials and Methods: We assessed various subsets of immune cells in peripheral blood (regulatory B and T cells, B-cell memory and natural killer cells) by multi-parametric flow cytometric analysis in 26 ASD children compared to 16 healthy controls (HCs) who matched age and gender. Results: No significant difference was observed between B-cell memory and NK cells in ASDs and HCs. Instead, regulatory B cells and T cells were decreased (p < 0.05) in ASD subjects when compared to HCs. Discussion: Regulatory B and T cells have a strategic role in maintaining the immune homeostasis. Their functions have been associated with the development of multiple pathologies especially in autoimmune diseases. According to our study, the immunological imbalance of regulatory B and T cells may play a pivotal role in the evolution of the disease, as immune deficiencies could be related to the severity of the ongoing disorder

    Thyroid function in Klinefelter syndrome: a multi center study from KING group

    Get PDF
    Purpose The prevalence and the etiopathogenesis of thyroid dysfunctions in Klinefelter syndrome (KS) are still unclear. The primary aim of this study was to evaluate the pathogenetic role of hypogonadism in the thyroid disorders described in KS, with the scope to distinguish between patients with KS and hypogonadism due to other causes (Kallmann syndrome, idiopathic hypogonadotropic hypogonadism, iatrogenic hypogonadism and acquired hypogonadotropic hypogonadism after surgical removal of pituitary adenomas) called non-KS. Therefore, we evaluated thyroid function in KS and in non-KS hypogonadal patients. Methods This is a case\u2013control multicentre study from KING group: Endocrinology clinics in university-affiliated medical centres. One hundred and seventy four KS, and sixty-two non-KS hypogonadal men were enrolled. The primary outcome was the prevalence of thyroid diseases in KS and in non-KS. Changes in hormonal parameters were evaluated. Exclusion criterion was secondary hypothyroidism. Analyses were performed using Student\u2019s t test. Mann\u2013Whitney test and Chi-square test. Results FT4 was significantly lower in KS vs non-KS. KS and non-KS presented similar TSH and testosterone levels. Hashimoto\u2019s thyroiditis (HT) was diagnosed in 7% of KS. Five KS developed hypothyroidism. The ratio FT3/FT4 was similar in both groups. TSH index was 1.9 in KS and 2.3 in non-KS. Adjustment for differences in age, sample size and concomitant disease in multivariate models did not alter the results. Conclusions We demonstrated in KS no etiopathogenic link to hypogonadism or change in the set point of thyrotrophic control in the altered FT4 production. The prevalence of HT in KS was similar to normal male population, showing absence of increased risk of HT associated with the XXY karyotype

    Complex congenital pelvic vascular malformations in the male: A rare cause of andrological symptoms. A case report and review of the literature

    No full text
    We describe a rare case of complex congenital vascular malformation in a young male with a non specific symptomatology characterized by dysuria, pelvic discomfort and pain in the left thigh and left testicle. Moreover we review the data and the syntomatology of the 70 male patients reported in the literature affected with this rare malformation

    Thyroid dysfunction and Klinefelter Syndrome: a multicenter study from the KING group

    No full text
    Thyroid function has been investigated in a large series of men with Klinefelter Syndrome showing that patients with Klinefelter Syndrome tend to have lower levels of fT4 than controls

    Thyroid function in Klinefelter syndrome: a multicentre study from KING group

    No full text
    Purpose: The prevalence and the etiopathogenesis of thyroid dysfunctions in Klinefelter syndrome (KS) are still unclear. The primary aim of this study was to evaluate the pathogenetic role of hypogonadism in the thyroid disorders described in KS, with the scope to distinguish between patients with KS and hypogonadism due to other causes (Kallmann syndrome, idiopathic hypogonadotropic hypogonadism, iatrogenic hypogonadism and acquired hypogonadotropic hypogonadism after surgical removal of pituitary adenomas) called non-KS. Therefore, we evaluated thyroid function in KS and in non-KS hypogonadal patients. Methods: This is a case–control multicentre study from KING group: Endocrinology clinics in university-affiliated medical centres. One hundred and seventy four KS, and sixty-two non-KS hypogonadal men were enrolled. The primary outcome was the prevalence of thyroid diseases in KS and in non-KS. Changes in hormonal parameters were evaluated. Exclusion criterion was secondary hypothyroidism. Analyses were performed using Student’s t test. Mann–Whitney test and Chi-square test. Results: FT4 was significantly lower in KS vs non-KS. KS and non-KS presented similar TSH and testosterone levels. Hashimoto’s thyroiditis (HT) was diagnosed in 7% of KS. Five KS developed hypothyroidism. The ratio FT3/FT4 was similar in both groups. TSH index was 1.9 in KS and 2.3 in non-KS. Adjustment for differences in age, sample size and concomitant disease in multivariate models did not alter the results. Conclusions: We demonstrated in KS no etiopathogenic link to hypogonadism or change in the set point of thyrotrophic control in the altered FT4 production. The prevalence of HT in KS was similar to normal male population, showing absence of increased risk of HT associated with the XXY karyotype

    Thyroid function in Klinefelter syndrome: a multicentre study from KING group

    Get PDF
    PURPOSE:The prevalence and the etiopathogenesis of thyroid dysfunctions in Klinefelter syndrome (KS) are still unclear. The primary aim of this study was to evaluate the pathogenetic role of hypogonadism in the thyroid disorders described in KS, with the scope to distinguish between patients with KS and hypogonadism due to other causes (Kallmann syndrome, idiopathic hypogonadotropic hypogonadism, iatrogenic hypogonadism and acquired hypogonadotropic hypogonadism after surgical removal of pituitary adenomas) called non-KS. Therefore, we evaluated thyroid function in KS and in non-KS hypogonadal patients. METHODS: This is a case-control multicentre study from KING group: Endocrinology clinics in university-affiliated medical centres. One hundred and seventy four KS, and sixty-two non-KS hypogonadal men were enrolled. The primary outcome was the prevalence of thyroid diseases in KS and in non-KS. Changes in hormonal parameters were evaluated. Exclusion criterion was secondary hypothyroidism. Analyses were performed using Student's t test. Mann-Whitney test and Chi-square test. RESULTS: FT4 was significantly lower in KS vs non-KS. KS and non-KS presented similar TSH and testosterone levels. Hashimoto's thyroiditis (HT) was diagnosed in 7% of KS. Five KS developed hypothyroidism. The ratio FT3/FT4 was similar in both groups. TSH index was 1.9 in KS and 2.3 in non-KS. Adjustment for differences in age, sample size and concomitant disease in multivariate models did not alter the results. CONCLUSIONS: We demonstrated in KS no etiopathogenic link to hypogonadism or change in the set point of thyrotrophic control in the altered FT4 production. The prevalence of HT in KS was similar to normal male population, showing absence of increased risk of HT associated with the XXY karyotype
    corecore