1,932 research outputs found

    Charge and Spin Gap Formation in Exactly Solvable Hubbard Chains with Long-Rang Hopping

    Full text link
    We discuss the transition from a metal to charge or spin insulating phases characterized by the opening of a gap in the charge or spin excitation spectra, respectively. These transitions are addressed within the context of two exactly solvable Hubbard and tJ chains with long range, 1/r1/r hopping. We discuss the specific heat, compressibility, and magnetic susceptibility of these models as a function of temperature, band filling, and interaction strength. We then use conformal field theory techniques to extract ground state correlation functions. Finally, by employing the gg-ology analysis we show that the charge insulator transition is accompanied by an infinite discontinuity in the Drude weight of the electrical conductivity. While the magnetic properties of these models reflect the genuine features of strongly correlated electron systems, the charge transport properties, especially near the Mott-Hubbard transition, display a non-generic behavior.Comment: 47 pages, REVTEX 3.0, 14 postscript figures available form [email protected] (submitted using the figures-command

    The Anderson impurity model with a narrow-band host: from orbital physics to the Kondo effect

    Full text link
    A particle-hole symmetric Anderson impurity model with a metallic host of narrow bandwidth is studied within the framework of the local moment approach. The resultant single-particle spectra are compared to unrestricted Hartree-Fock, second order perturbation theory about the noninteracting limit, and Lanczos spectra by Hofstetter and Kehrein. Rather accurate analytical results explain the spectral evolution over almost the entire range of interactions. These encompass, in particular, a rationale for the four-peak structure observed in the low-energy sector of the Lanczos spectra in the moderate-coupling regime. In weak coupling, the spectral evolution is governed by orbital effects, while in the strong coupling Kondo limit, the model is shown to connect smoothly to the generic Anderson impurity with a flat and infinitely wide hybridization band.Comment: 17 pages, 7 figure

    Perturbation theory for optical excitations in the one-dimensional extended Peierls--Hubbard model

    Full text link
    For the one-dimensional, extended Peierls--Hubbard model we calculate analytically the ground-state energy and the single-particle gap to second order in the Coulomb interaction for a given lattice dimerization. The comparison with numerically exact data from the Density-Matrix Renormalization Group shows that the ground-state energy is quantitatively reliable for Coulomb parameters as large as the band width. The single-particle gap can almost triple from its bare Peierls value before substantial deviations appear. For the calculation of the dominant optical excitations, we follow two approaches. In Wannier theory, we perturb the Wannier exciton states to second order. In two-step perturbation theory, similar in spirit to the GW-BSE approach, we form excitons from dressed electron-hole excitations. We find the Wannier approach to be superior to the two-step perturbation theory. For singlet excitons, Wannier theory is applicable up to Coulomb parameters as large as half band width. For triplet excitons, second-order perturbation theory quickly fails completely.Comment: 32 pages, 12 figures, submtted to JSTA

    Quantum Antiferromagnetism of Fermions in Optical Lattices with Half-filled p-band

    Full text link
    We study Fermi gases in a three-dimensional optical lattice with five fermions per site, i.e. the s-band is completely filled and the p-band with three-fold degeneracy is half filled. We show that, for repulsive interaction between fermions, the system will exhibit spin-3/2 antiferromagnetic order at low temperature. This conclusion is obtained in strong interaction regime by strong coupling expansion which yields an isotropic spin-3/2 Heisenberg model, and also in weak interaction regime by Hatree-Fock mean-field theory and analysis of Fermi surface nesting. We show that the critical temperature for this antiferromagnetism of a p-band Mott insulator is about two orders of magnitudes higher than that of an ss-band Mott insulator, which is close to the lowest temperature attainable nowadays

    New Comparisons for Local Quantities of the Two-Dimensional Hubbard Model

    Full text link
    We have compared the results of our approximation scheme, the composite operator method, for the double occupancy and the internal energy of the two-dimensional Hubbard model with numerical data obtained by means of the Lanczos and quantum Monte Carlo schemes. The agreement is very good at both half-filling and away from it showing how reliable is the approximation scheme.Comment: 6 pages, 3 figure

    Orbital-selective Mott-Hubbard transition in the two-band Hubbard model

    Full text link
    Recent advances in the field of quantum Monte Carlo simulations for impurity problems allow --within dynamical mean field theory-- for a more thorough investigation of the two-band Hubbard model with narrow/wide band and SU(2)-symmetric Hund's exchange. The nature of this transition has been controversial, and we establish that an orbital-selective Mott-Hubbard transition exists. Thereby, the wide band still shows metallic behavior after the narrow band became insulating -not a pseudogap as for an Ising Hund's exchange. The coexistence of two solutions with metallic wide band and insulating or metallic narrow band indicates, in general, first-order transitions.Comment: 4 pages, 3 figures; 2nd version as published in Phys. Rev. B (R); minor corrections, putting more emphasis on differences in spectra when comparing SU(2) and Ising Hund's exchang

    Strong-coupling approach to the Mott--Hubbard insulator on a Bethe lattice in Dynamical Mean-Field Theory

    Full text link
    We calculate the Hubbard bands for the half-filled Hubbard model on a Bethe lattice with infinite coordination number up to and including third order in the inverse Hubbard interaction. We employ the Kato--Takahashi perturbation theory to solve the self-consistency equation of the Dynamical Mean-Field Theory analytically for the single-impurity Anderson model in multi-chain geometry. The weight of the secondary Hubbard sub-bands is of fourth order so that the two-chain geometry is sufficient for our study. Even close to the Mott--Hubbard transition, our results for the Mott--Hubbard gap agree very well with those from numerical Dynamical Density-Matrix Renormalization Group (DDMRG) calculations. The density of states of the lower Hubbard band also agrees very well with DDMRG data, apart from a resonance contribution at the upper band edge which cannot be reproduced in low-order perturbation theory.Comment: 40 pages, 7 figure

    Decentralized Taxation and the Size of Government: Evidence from Swiss State and Local Governments

    Get PDF
    According to the Leviathan-Model, fiscal federalism is seen as a binding constraint on a revenue-maximizing government. The competitive pressure of fiscal federalism is supposed to reduce public sector size as compared to unitary states. However, empirical results concerning the Leviathan hypothesis are mixed. This study uses a state and local-level panel data set of Swiss cantons from 1980 to 1998 to empirically analyze the effect of different federalist institutions on the size and structure of government revenue. Because of the considerable tax autonomy of sub-national Swiss governments, it is possible to investigate different mechanisms by which fiscal federalism may influence government size. The results indicate that tax exporting has a revenue expanding effect whereas tax competition favors a smaller size of government. Fragmentation has essentially no effect on the size of government revenue for Swiss cantons. The overall effect of revenue decentralization leads to fewer tax revenue but higher user charges. Thus, revenue decentralization favors a smaller size of government revenue and shifts government revenue from taxes to user charges.federalism, government revenue, tax competition, tax exporting

    Equation of state for the two component Van der Waals gas with relativistic excluded volumes

    Get PDF
    A canonical partition function for the two-component excluded volume model is derived, leading to two di erent van der Waals approximations. The one is known as the Lorentz-Berthelot mixture and the other has been proposed recently. Both models are analysed in the canonical and grand canonical ensemble. In comparison with the one-component van der Waals excluded volume model the suppression of particle densities is reduced in these two-component formulations, but in two essentially di erent ways. Presently used multi-component models have no such reduction. They are shown to be not correct when used for components with di erent hard-core radii. For high temperatures the excluded volume interaction is refined by accounting for the Lorentz contraction of the spherical excluded volumes, which leads to a distinct enhancement of lighter particles. The resulting e ects on pion yield ratios are studied for AGS and SPS data
    • …
    corecore