5,967 research outputs found

    OH-selected AGB and post-AGB stellar objects II.Blue versus red evolution off the AGB

    Get PDF
    Using objects found in a systematic survey of the galactic Plane in the 1612-MHz OH line, we discuss in detail two ``sequences'' of post-AGB evolution, a red and a blue. We argue that the red and the blue groups separate by initial mass at 4Msun, based on evolutionary-sequence turn-off colours, spectral energy distributions, outflow velocities and scaleheight. The higher-mass (blue) objects may have earlier AGB termination. The lower-mass (red) objects undergo very sudden reddening for IRAS colour R21\sim1.2; these sources must all undergo a very similar process at AGB termination. The transition colour corresponds to average initial masses of 1.7Msun. A combined IRAS-MSX colour proves a very sensitive tool to distinguish lower-mass, early post-AGB objects from sources still on the AGB and also to distinguish more evolved post-AGB objects from star-forming regions. The high-mass blue objects are the likely precursors of bipolar planetary nebulae, whereas the low-mass red objects will evolve into elliptical planetary nebulae.Comment: 12 pages, LaTex, 7 figures (1 colour), AJ (accepted

    Self-similar decay of high Reynolds number Taylor-Couette turbulence

    Get PDF
    We study the decay of high-Reynolds number Taylor-Couette turbulence, i.e. the turbulent flow between two coaxial rotating cylinders. To do so, the rotation of the inner cylinder (Rei=2×106_i=2 \times 10^6, the outer cylinder is at rest) is stopped within 12 s, thus fully removing the energy input to the system. Using a combination of laser Doppler anemometry and particle image velocimetry measurements, six decay decades of the kinetic energy could be captured. First, in the absence of cylinder rotation, the flow-velocity during the decay does not develop any height dependence in contrast to the well-known Taylor vortex state. Second, the radial profile of the azimuthal velocity is found to be self-similar. Nonetheless, the decay of this wall-bounded inhomogeneous turbulent flow does not follow a strict power law as for decaying turbulent homogeneous isotropic flows, but it is faster, due to the strong viscous drag applied by the bounding walls. We theoretically describe the decay in a quantitative way by taking the effects of additional friction at the walls into account.Comment: 7 pages, 6 figure

    Azimuthal velocity profiles in Rayleigh-stable Taylor-Couette flow and implied axial angular momentum transport

    Get PDF
    We present azimuthal velocity profiles measured in a Taylor-Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of η=0.716\eta = 0.716, an aspect-ratio of Γ=11.74\Gamma = 11.74, and the plates closing the cylinders in the axial direction are attached to the outer cylinder. We investigate angular momentum transport and Ekman pumping in the Rayleigh-stable regime. The regime is linearly stable and is characterized by radially increasing specific angular momentum. We present several Rayleigh-stable profiles for shear Reynolds numbers ReSO(105)Re_S \sim O(10^5) \,, both for Ωi>Ωo>0\Omega_i > \Omega_o > 0 (quasi-Keplerian regime) and Ωo>Ωi>0\Omega_o > \Omega_i > 0 (sub-rotating regime) where Ωi,o\Omega_{i,o} is the inner/outer cylinder rotation rate. None of the velocity profiles matches the non-vortical laminar Taylor-Couette profile. The deviation from that profile increased as solid-body rotation is approached at fixed ReSRe_S. Flow super-rotation, an angular velocity greater than that of both cylinders, is observed in the sub-rotating regime. The velocity profiles give lower bounds for the torques required to rotate the inner cylinder that were larger than the torques for the case of laminar Taylor-Couette flow. The quasi-Keplerian profiles are composed of a well mixed inner region, having approximately constant angular momentum, connected to an outer region in solid-body rotation with the outer cylinder and attached axial boundaries. These regions suggest that the angular momentum is transported axially to the axial boundaries. Therefore, Taylor-Couette flow with closing plates attached to the outer cylinder is an imperfect model for accretion disk flows, especially with regard to their stability.Comment: 22 pages, 10 figures, 2 tables, under consideration for publication in Journal of Fluid Mechanics (JFM

    Infrared Classification of Galactic Objects

    Get PDF
    Unbiased analysis shows that IRAS data reliably differentiate between the early and late stages of stellar evolution because objects at these stages clearly segregate in infrared color-color diagrams. Structure in these diagrams is primarily controlled by the density distribution of circumstellar dust. The density profile around older objects is the steepest, declining as r2r^{-2}, while young objects have profiles that vary as r3/2r^{-3/2} and flatter. The different density profiles reflect the different dynamics that govern the different environments. Our analysis also shows that high mass star formation is strongly concentrated within \about 5 kpc around the Galactic center, in support of other studies.Comment: 11 pages, 3 Postscript figures (included), uses aaspp4.sty. To appear in Astrophysical Journal Letter

    Experimental and numerical study of SiON microresonators with air and polymer cladding

    Get PDF
    A systematic experimental and numerical study of the device performance of waveguide-coupled SiON microresonators with air and polymer cladding is presented. Values of device parameters like propagation losses of the microresonator modes, the off-resonance insertion losses, and the straight waveguide to microresonator coupling are determined by applying a detailed fitting procedure to the experimental results and compared to results of detailed numerical simulations. By comparing the propagation losses of the fundamental TE polarized microresonator mode obtained by fitting to the measured spectra to the also experimentally determined propagation losses in the adjacent straight waveguide and the materials losses, it is possible to identify the loss mechanisms in the microresonator. By comparing experimental results for microresonators with air and polymethylmethacrylate cladding and a detailed numerical study, the influence of the cladding index on the bend losses is evaluated. It is demonstrated that the presence of an upper cladding can, under the right conditions, actually be beneficial for loss reduction

    Taylor-Couette turbulence at radius ratio η=0.5\eta=0.5: scaling, flow structures and plumes

    Get PDF
    Using high-resolution particle image velocimetry we measure velocity profiles, the wind Reynolds number and characteristics of turbulent plumes in Taylor-Couette flow for a radius ratio of 0.5 and Taylor number of up to 6.21096.2\cdot10^9. The extracted angular velocity profiles follow a log-law more closely than the azimuthal velocity profiles due to the strong curvature of this η=0.5\eta=0.5 setup. The scaling of the wind Reynolds number with the Taylor number agrees with the theoretically predicted 3/7-scaling for the classical turbulent regime, which is much more pronounced than for the well-explored η=0.71\eta=0.71 case, for which the ultimate regime sets in at much lower Ta. By measuring at varying axial positions, roll structures are found for counter-rotation while no clear coherent structures are seen for pure inner cylinder rotation. In addition, turbulent plumes coming from the inner and outer cylinder are investigated. For pure inner cylinder rotation, the plumes in the radial velocity move away from the inner cylinder, while the plumes in the azimuthal velocity mainly move away from the outer cylinder. For counter-rotation, the mean radial flow in the roll structures strongly affects the direction and intensity of the turbulent plumes. Furthermore, it is experimentally confirmed that in regions where plumes are emitted, boundary layer profiles with a logarithmic signature are created

    Exploring the phase space of multiple states in highly turbulent Taylor-Couette flow

    Get PDF
    We investigate the existence of multiple turbulent states in highly turbulent Taylor-Couette flow in the range of Ta=1011\mathrm{Ta}=10^{11} to 910129\cdot10^{12}, by measuring the global torques and the local velocities while probing the phase space spanned by the rotation rates of the inner and outer cylinder. The multiple states are found to be very robust and are expected to persist beyond Ta=1013\mathrm{Ta}=10^{13}. The rotation ratio is the parameter that most strongly controls the transitions between the flow states; the transitional values only weakly depend on the Taylor number. However, complex paths in the phase space are necessary to unlock the full region of multiple states. Lastly, by mapping the flow structures for various rotation ratios in a Taylor-Couette setup with an equal radius ratio but a larger aspect ratio than before, multiple states were again observed. Here, they are characterized by even richer roll structure phenomena, including, for the first time observed in highly turbulent TC flow, an antisymmetrical roll state.Comment: 9 pages, 7 figure
    corecore