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We present azimuthal velocity profiles measured in a Taylor–Couette apparatus, which
has been used as a model of stellar and planetary accretion disks. The apparatus has
a cylinder radius ratio of η = 0.716, an aspect ratio of Γ = 11.74, and the plates
closing the cylinders in the axial direction are attached to the outer cylinder. We
investigate angular momentum transport and Ekman pumping in the Rayleigh-stable
regime. This regime is linearly stable and is characterized by radially increasing
specific angular momentum. We present several Rayleigh-stable profiles for shear
Reynolds numbers ReS ∼O(105), for both Ωi >Ωo > 0 (quasi-Keplerian regime) and
Ωo >Ωi > 0 (sub-rotating regime), where Ωi,o is the inner/outer cylinder rotation rate.
None of the velocity profiles match the non-vortical laminar Taylor–Couette profile.
The deviation from that profile increases as solid-body rotation is approached at fixed
ReS. Flow super-rotation, an angular velocity greater than those of both cylinders, is
observed in the sub-rotating regime. The velocity profiles give lower bounds for the
torques required to rotate the inner cylinder that are larger than the torques for the
case of laminar Taylor–Couette flow. The quasi-Keplerian profiles are composed of a
well-mixed inner region, having approximately constant angular momentum, connected
to an outer region in solid-body rotation with the outer cylinder and attached axial
boundaries. These regions suggest that the angular momentum is transported axially
to the axial boundaries. Therefore, Taylor–Couette flow with closing plates attached
to the outer cylinder is an imperfect model for accretion disk flows, especially with
regard to their stability.
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1. Introduction
Rotating shear flows are common in nature. Geophysical and astrophysical examples

include the interiors of planets and stars, planetary atmospheres, and stellar and
planetary accretion disks. Since direct observations and measurements are hard to
perform for many of these flows, laboratory models that incorporate the essential
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features of these flows can be useful. A common simple rotating shear flow that can
be implemented in the laboratory is Taylor–Couette (TC) flow, which is the flow in the
fluid-filled gap between two coaxial rotating cylinders. Taylor–Couette flow has found
particular applicability as a model for astrophysical accretion disks in determining
their stability properties and the outward angular momentum flux that is necessary
in order for material to be transported inwards towards the central body (Zeldovich
1981; Richard & Zahn 1999; Richard 2001; Dubrulle et al. 2005a; Ji & Balbus 2013).
Taylor–Couette experiments have produced contradictory answers to these questions,
causing great debate centred on the effects of the no-slip axial boundaries found in
Taylor–Couette experiments which do not match the open stratified boundaries of
accretion disks (Balbus 2011; Avila 2012; Schartman et al. 2012; Ji & Balbus 2013;
Edlund & Ji 2014).

We can define a Reynolds number for the inner (outer) cylinder using the radius
ri(ro), the rotation rate Ωi(Ωo) and the fluid kinematic viscosity ν, giving

Rei = Ωi ri(ro − ri)

ν
, Reo = Ωo ro(ro − ri)

ν
. (1.1a,b)

Rather than using Rei and Reo, we use the shear Reynolds number ReS and the so-
called q parameter, detailed below, to compare different parts of the parameter space.
They have a more intuitive relation to the shear and the global rotation. The shear
Reynolds number ReS ∝ |Ωi −Ωo|, which quantifies shear, is defined as

ReS = 2
1+ η |Rei − ηReo|, (1.2)

where η = ri/ro is the radius ratio (Dubrulle et al. 2005a). Next to η, another
important geometric quantity is the aspect ratio Γ = L/(ro − ri), which is the ratio
of the height of the cylinders L to the gap width. To quantify the global rotation,
we use the q parameter (Ji et al. 2006; Schartman et al. 2012) defined through the
relation

Ωi

Ωo
= η−q. (1.3)

The q parameter is real for co-rotating cylinders, the case exclusively dealt with in
this paper. Hence, we will define both Ωi and Ωo to be positive throughout this paper.
Solid-body rotation Ωi=Ωo corresponds to q= 0, Ωi>Ωo gives q> 0, Ωi<Ωo gives
q < 0, and pure inner and pure outer rotation correspond to q = +∞ and q = −∞
respectively.

Different dimensionless parameters other than ReS and q have been used, which
are presented here for ease of comparison. Rather than using ReS to quantify the
shear, previous work on our apparatus (van Gils et al. 2011b, 2012) has used a Taylor
number Ta = (σ ReS)

2, where σ = (1 + η)4/(2√η)4 is a geometric Prandtl number
(Eckhardt, Grossmann & Lohse 2007), which equals 1.057 for our η = 0.716. With
a nearly identical geometry, Paoletti & Lathrop (2011) used a different definition of
the Reynolds number, namely Re=√σ ReS =√Ta/σ . Another parameter quantifying
global rotation is the rotation parameter, RΩ (Dubrulle et al. 2005a), defined as RΩ =
(1− η)(Rei + Reo)/(ηReo − Rei).

At low ReS, before the formation of Taylor vortices, and in the absence of Ekman
pumping from axial boundaries (e.g. periodic or free-slip axial boundary conditions),
the azimuthal velocity profile is

uθ,lam(r)= Ar+ B
r
, A= Ωo − η2Ωi

1− η2
, B= r2

i (Ωi −Ωo)

1− η2
. (1.4)



344 F. Nordsiek and others

0

(Rayleigh-
unstable)

(Rayleigh line)

(Keplerian)

(Quasi-Keplerian)

(Solid-body rotation)

(Sub-rotation)

(Rayleigh-stable)

FIGURE 1. (Colour online) The Taylor–Couette parameter space considered here (red
arrow). The different regions are shown as well as three important lines of constant q:
the Rayleigh line (q = 2), the Keplerian line (q = 3/2) and solid-body rotation (q = 0).
The whole Rayleigh-stable region (q < 2) is shaded with different colours for the
quasi-Keplerian regime (light blue) and the sub-rotating regime (dark blue).

We will refer to this as laminar Taylor–Couette flow.
Some rotating flows have radially increasing specific angular momentum

(sign(∂`/∂r)= sign `), where `= r2ω is the specific angular momentum and ω= uθ/r
is the fluid angular velocity. Such flows (see figure 1), as long as they are purely
hydrodynamic, barotropic and stably stratified as we consider here, are stable to
infinitesimal perturbations (i.e. linearly stable) according to the Rayleigh criterion
(Rayleigh 1917). For Taylor–Couette flow, this corresponds to q< 2. Flows for which
q > 2 are linearly unstable at sufficiently high Reynolds numbers (Taylor 1923);
this is often called the centrifugal instability. Hence, q = 2 is referred to as the
Rayleigh line. The Rayleigh-stable region includes sub-rotation (Ωi <Ωo), solid-body
rotation (Ωi = Ωo), and super-rotation (Ωi > Ωo). The flow in the super-rotating
region is often referred to as quasi-Keplerian, since it includes cylinder rotation rates
(q = 3/2) obeying Kepler’s third law relating orbital radius and period. This regime
is of particular relevance to astrophysical systems such as accretion disks since they
are Rayleigh-stable with azimuthal flow profiles in the plane of the disk that are
expected to not deviate significantly from Kepler’s third law when ignoring the disk’s
self-gravitation and relativistic effects (Richard & Zahn 1999; Richard 2001; Dubrulle
et al. 2005a; Ji & Balbus 2013).

Accretion disks are Rayleigh-stable but are known to have accretion rates requiring
radial fluxes of angular momentum far greater than the flux provided by viscous
diffusion in laminar Taylor–Couette flow-like disks, indicating that they are in fact
unstable (Richard & Zahn 1999; Richard 2001; Dubrulle et al. 2005a; Ji & Balbus
2013). There has been a search for the instabilities at play in these flows. Disks that
are sufficiently ionized to be electrically conductive are known to be unstable via the
magneto-rotational instability (MRI) (Ji & Balbus 2013, and description therein). For
weakly ionized disks or parts of disks, investigation has focused on stability in the
presence of stratification (Dubrulle et al. 2005b; Le Bars & Le Gal 2007; Le Dizès
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& Riedinger 2010) and stability to finite amplitude perturbations (nonlinear stability)
which has been the subject of several Taylor–Couette experiments including our own
in this paper (Richard 2001; Ji et al. 2006; Paoletti & Lathrop 2011; Paoletti et al.
2012; Schartman et al. 2012; Edlund & Ji 2014).

For an incompressible fluid in the Rayleigh-stable region of Taylor–Couette flow
and compressible accretion disk flow, the possibility of a nonlinear instability has not
yet been ruled out for all ReS. Plane Couette flow and pipe flow are both examples
of linearly stable flows that have nonlinear instabilities at sufficient Re (Grossmann
2000; Avila et al. 2011; Shi, Avila & Hof 2013, and references therein). Maretzke,
Hof & Avila (2014) found transient growth, a necessary prerequisite for a nonlinear
instability, in Rayleigh-stable Taylor–Couette flow. Accretion disks have very high
Reynolds numbers, with ReS possibly as high as 1014 (Paoletti et al. 2012; Ji & Balbus
2013). Therefore, it is reasonable to ask whether Rayleigh-stable Taylor–Couette flow
is nonlinearly stable or unstable.

In prior experimental work, visualization via Kalliroscope particles, angular
momentum transport measurements and velocimetry measurements have been
performed, yielding contradictory results on the presence of a nonlinear instability,
especially for quasi-Keplerian flow (Wendt 1933; Taylor 1936a,b; Coles 1965; Richard
2001; Ji et al. 2006; Borrero-Echeverry, Schatz & Tagg 2010; Paoletti & Lathrop
2011; Burin & Czarnocki 2012; Paoletti et al. 2012; Schartman et al. 2012; Edlund
& Ji 2014). These experiments have, to varying degree, Ekman pumping driven by
the no-slip boundary conditions on the axial boundaries. The Ekman pumping could
destabilize the flow depending on the axial end configuration in a way that would
not be found in astrophysical accretion disks (Balbus 2011; Avila 2012; Schartman
et al. 2012; Ji & Balbus 2013; Edlund & Ji 2014), which have open stratified axial
boundaries. Axial boundaries that rotate with the outer cylinder, such as those on
the apparatus presented in this paper, were found to have Ekman pumping effects
that spanned the whole flow volume (Avila 2012; Schartman et al. 2012; Edlund &
Ji 2014), which might explain the large, and probably turbulent, angular momentum
transport found by the Maryland experiment (Paoletti & Lathrop 2011), in contrast
to the low-angular-momentum-transport steady laminar flow found in the Princeton
MRI and HTX experiments which reduced the Ekman pumping by splitting the axial
boundaries into rings rotated at speeds intermediate to those of the two cylinders (Ji
et al. 2006; Schartman et al. 2012; Edlund & Ji 2014).

The effect of the Ekman pumping in wide-gap (η<0.34) low-aspect-ratio (Γ<3)
Rayleigh-stable experiments, such as the Princeton MRI and HTX experiments, on
the flow state and angular momentum transport has been the subject of several
investigations. When the axial boundaries are attached to the outer cylinder as
opposed to rotating at intermediate speeds, there are large fluctuations and mixing
near the inner cylinder (Dunst 1972; Edlund & Ji 2014), and quiescent flow rotating
close to Ωo near the outer cylinder (Dunst 1972; Kageyama et al. 2004; Schartman
et al. 2012; Edlund & Ji 2014). Speeding up the part of the axial boundaries near
the inner cylinder causes the fluctuations near the inner cylinder to decrease and the
azimuthal velocities to more closely match laminar Taylor–Couette flow (Edlund & Ji
2014). In the reduced Ekman pumping configuration, perturbations by jets from the
inner cylinder were found to decay for ReS 6 106 (Edlund & Ji 2014).

The effect of the Ekman pumping in medium-gap (η ≈ 0.7) larger-aspect-ratio
(Γ ∼ 10) experiments, such as the Maryland and our experiments, has not received
as much attention, although it is expected to be similar, which would resolve the
contradictory results. At low ReS< 104, axial boundaries attached to the outer cylinder
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FIGURE 2. (Colour online) Sketch of the T3C apparatus used for the measurements
presented in this paper. The inner cylinder is split into three sections, having a 2.5 mm
gap between each section, marked as positions 1 and 2.

were found to destabilize the flow (Avila 2012). For ReS 6 105 direct numerical
simulations (DNS) with periodic axial boundaries in the quasi-Keplerian regime,
Ostilla-Mónico et al. (2014) found that initially turbulent states always decayed to
laminar Taylor–Couette flow. In this paper, we present azimuthal velocimetry profiles
in both the quasi-Keplerian and the sub-rotating regimes in a geometry similar to the
Maryland experiment. We compare them with the profiles in laminar Taylor–Couette
flow and discuss their structure to better elucidate the effects of Ekman pumping on
the flow and the large angular momentum transport associated with axial boundaries
fixed to the outer cylinder for our geometry (Paoletti & Lathrop 2011).

The paper is organized as follows: § 2 describes the experiment and the parameter
space explored, § 3 presents the azimuthal velocity and specific angular momentum
profiles, § 4 presents further analysis and discussion of the azimuthal profiles including
the primarily axial transport of angular momentum, and § 5 summarizes the results and
presents conclusions.

2. The experiment and the parameter space explored

The apparatus is described in detail in van Gils et al. (2011a) and is shown
schematically in figure 2. A brief summary is given here. The inner cylinder has
an outer radius of ri = 20.00 cm and the transparent outer cylinder has an inner
radius of ro = 27.94 cm, which gives η= 0.716. They can rotate independently up to
maxima of |Ωi/2π| = 20 Hz and |Ωo/2π| = 10 Hz respectively. The total height is
L= 93.2 cm, which gives Γ = 11.74. The axial boundaries are attached to the outer
cylinder. The inner cylinder is split into three sections. The height of the middle
section is Lmid = 53.6 cm, and the end sections have equal heights of Le = 19.35 cm.
There is a 2.5 mm gap between each section, labelled 1 and 2 in figure 2. The
system was filled with water and operated at room temperature with cooling applied
at the axial boundaries. This geometry is similar to the apparatus used by Paoletti &
Lathrop (2011), who have an η= 0.7245 and Γ = 11.47 geometry.
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The azimuthal velocity profiles were obtained using laser Doppler anemometry
(LDA). The LDA configuration used backscatter from seed particles in a measurement
volume of approximately 0.07 mm× 0.07 mm× 0.3 mm. Dantec PSP-5 particles with
a 5 µm diameter and 1.03 g cm−3 density were used. The optical effect of the outer
cylinder curvature on the LDA measurements was corrected by using the calculations
of Huisman, van Gils & Sun (2012b). The velocimetry was calibrated using radial and
axial profiles of solid-body rotation at different rotation rates. The error in the mean
velocity profiles from the calibration, which was the dominant source in the mean
profiles, was smaller than 0.1 %. For all LDA measurements a statistical convergence
of 1 % was achieved, which translates to between 1 % and 6 % of |Ωi −Ωo|, which
prevents investigation into fluctuations and deviations from axisymmetry. When
measuring close to the inner cylinder, reflections from the metal inner cylinder were
found to be problematic. Hence, the radial profiles presented in this paper were
performed at the axial height of the 2.5 mm gap between the bottom and middle
inner cylinder sections, which corresponds to an axial height z/L = 0.209 off the
bottom, so that the LDA laser would be absorbed in the gap as opposed to being
reflected off the cylinder surface. The axial dependence of the angular velocity was
found to be less than 2 % of |Ωi−Ωo| from axial profiles at midgap from midheight
to 1.5 cm off the bottom, and between radial profiles over the outer half of the gap
at five heights z= {0.195, 0.223, 0.414, 0.464, 0.927} m off the bottom, which are at
z/L={0.209, 0.238, 0.444, 0.497, 0.995}. The last one, z/L= 0.995, is 5 mm from the
top axial boundary. Thus, a radial profile at z/L= 0.209 is representative, other than
possibly for radial positions closer than 2.5 mm to the inner cylinder. The boundary
layers on the axial boundaries are confined to within 5 mm of the boundaries.

Velocimetry was performed for five quasi-Keplerian q values including Keplerian
(q = 1.500), three sub-rotating values of q, and one unstable but very close to the
Rayleigh line q value (q= 2.100), which are all listed in table 1. The value q= 1.909
was chosen to match the simulations of Avila (2012) on a nearly identical geometry
and the Princeton experimental work at q=1.9 (Ji et al. 2006; Schartman et al. 2012).
Additionally, q = {1.909, 1.500, 1.258, 0.692} were chosen to match ongoing torque
measurements on the Maryland experiment. Measurements for all values of q were
taken at ReS = 1.04 × 105, the three values of q > 1.500 at ReS = 7.81 × 105, and
q= 1.500 at ReS= 2.07× 104. All of the azimuthal velocity profiles, the radial profiles
at all five heights and the axial profile at midgap are available in the supplementary
data available at http://dx.doi.org/10.1017/jfm.2015.275. Each pair of q and ReS was
reached by starting with both cylinders at rest, linearly increasing Ωi and Ωo to their
final values over 120 s while maintaining constant q, and then waiting at least 600 s
for transients to decay before performing measurements.

3. Results on the azimuthal profiles
It is convenient to look at the velocity profiles in terms of the normalized radial

position and the normalized angular velocity given by

r̃= r− ri

d
, (3.1)

ω̃= ω−Ωo

Ωi −Ωo
, (3.2)

where d = ro − ri is the width of the gap. The expression for r̃ gives r̃ = 0 at the
inner cylinder and r̃ = 1 at the outer cylinder. Regardless of which cylinder has the

http://dx.doi.org/10.1017/jfm.2015.275
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q Ωi/Ωo RΩ Region ReS

2.07× 104 1.04× 105 7.81× 105

2.100 2.018 −0.9533 Rayleigh unstable X X
1.909 1.893 −1.047 Quasi-Keplerian X X
1.500 1.651 −1.333 Quasi-Keplerian X X X
1.258 1.523 −1.587 Quasi-Keplerian X
0.692 1.260 −2.900 Quasi-Keplerian X
0.333 1.118 −6.062 Quasi-Keplerian X
−0.500 0.8461 4.141 Sub-rotating X
−1.000 0.7158 2.113 Sub-rotating X
−2.000 0.5124 1.113 Sub-rotating X

TABLE 1. The q values for which velocity profiles were measured and their corresponding
rotation rate ratios (Ωi/Ωo) and rotation parameter, RΩ . We also give the region of the
Taylor–Couette parameter space the measurement is in, and for what ReS measurements
were taken.

larger angular velocity, the expression for ω̃ gives ω̃= 0 whenever ω=Ωo and ω̃= 1
whenever ω=Ωi. For the quasi-Keplerian regime, ω̃>1 indicates a super-rotating flow
with ω>Ωi >Ωo > 0 and ω̃ < 0 indicates a sub-rotating flow with Ωi >Ωo >ω. Due
to the sign change in the denominator for the sub-rotating regime, ω̃ > 1 indicates a
sub-rotating flow with Ωo >Ωi >ω and ω̃ < 0 implies a super-rotating flow with ω>
Ωo >Ωi > 0. The laminar Taylor–Couette profile, which in these normalized variables
is independent of Ωi and Ωo, is

ω̃lam = η
2(1− r̃)(̃r(1− η)+ 1+ η)
(1+ η)(̃r(1− η)+ η)2 . (3.3)

The ω̃ profiles for all values of q at ReS= 1.04× 105 are compared with each other
and with the laminar Taylor–Couette profile in figure 3. None of the profiles matched
the laminar Taylor–Couette profile. On approaching solid-body rotation (q→ 0) at
fixed ReS in both regimes, deviation from the laminar Taylor–Couette profile increases
and the part of the profile near the inner cylinder steepens. For the quasi-Keplerian
regime, as we approach solid-body rotation, the rest of the profile flattens towards
ω̃ = 0. For the sub-rotating regime, ω̃ < 0 away from the inner cylinder. This
indicates that the fluid is super-rotating in terms of angular velocity compared with
both cylinders (ω >Ωo >Ωi > 0), with the degree of super-rotation, as a fraction of
|Ωi − Ωo|, increasing as we approach solid-body rotation. This flow super-rotation
will be further discussed in § 4.1.

The resulting profiles of the specific angular momentum `= r2ω at ReS= 1.04× 105

are shown in figure 4. For the quasi-Keplerian regime, the specific angular momentum
profiles all follow the same pattern of having an inner flat region connected to an outer
region rotating at Ωo, which will be discussed further in § 4.2. The flat region in `
indicates that the flow was well mixed in that region.

Keplerian (q = +1.500) profiles for three different ReS are compared in figure 5.
They all have a similar shape, but as ReS is increased, ω̃ decreases towards solid-body
rotation at Ωo, especially in the outer parts of the gap. In terms of the specific angular
momentum, increasing ReS leads to a sharper transition between the flat region and the
rotation at Ωo region.
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FIGURE 3. Comparison of the normalized angular velocity ω̃ = (ω − Ωo)/(Ωi − Ωo)

profiles across the gap for different values of the q parameter at ReS= 1.04× 105. (a) The
full scale of ω̃ (the error bars are smaller than the symbols). (b) An expansion around
ω̃= 0, using the same symbols to emphasize the parts of the profiles close to rotation at
Ωo. Connecting lines are drawn to guide the eye. The profile for laminar Taylor–Couette
flow is drawn for comparison.

4. Further analysis and discussion
4.1. Super-rotating flow for the sub-rotating regime

As seen in figure 3 for all three sub-rotating profiles, ω̃ < 0 except near the inner
cylinder, indicating flow super-rotation (figure 3b). The flow super-rotation can be
quantified by taking the minimum ω̃ in the profile to be the strength of the super-
rotation, and finding its radial position along with where the linear interpolation of
the profile crosses ω=Ωo(ω̃= 0) to super-rotation. The strength of the super-rotation
is shown in figure 6(a) and the radial locations of the maximum super-rotation and of
ω̃= 0 are shown in figure 6(b). On approaching solid-body rotation (q→ 0) at fixed
non-zero ReS, the strength of super-rotation increases, and the radial positions of the
super-rotation maximum and ω̃ = 0 both move towards the inner cylinder. This is a
singular limit, which is very different from the limit q→ 0, in which case one would
get ω(r) = Ωi = Ωo. The distance between these radial positions was approximately
the same for all three q, namely a value of 0.2 gap widths. The flow super-rotation
was seen at all five heights for which radial profiles of the velocity were taken. They
vary from each other by 1ω̃ < 0.01 axially over the outer half of the gap. The 0.2
gap-width separation was seen at the other heights for q=−0.503, but could not be
resolved for q= {−1.001,−1.994} since the point where ω̃= 0 lies in the inner half
of the gap.

The specific angular momentum profiles in figure 4 were slightly greater than
for solid-body rotation with the outer cylinder, except close to the inner cylinder,
which is another way of saying that there is flow super-rotation. The Navier–Stokes
equation does not constrain angular velocities to be bound by Ωi and Ωo due to
its nonlinear term, unlike the temperature field in Rayleigh–Bénard flow, which is
constrained between the two plate temperatures as the temperature advection equation
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FIGURE 4. (Colour online) The specific angular momentum (`= r2ω) profiles across the
gap for the different q values at ReS ≈ 1.04 × 105. The red circles (u) are the specific
angular momentum profiles of the flow, with connecting lines to guide the eye. The error
bars are smaller than the symbols. The solid black line (——) and dashed blue line (– – –)
are the specific angular momentum profiles for ω(̃r)=Ωi and ω(̃r)=Ωo respectively. The
vertical axes have the same units and the horizontal axes are the same for all plots. The
Keplerian configuration is shown in (c). (a) q=+2.098, ReS= 1.03× 105; (b) q=+1.908,
ReS = 1.03 × 105; (c) q = +1.501, ReS = 1.03 × 105; (d) q = +1.255, ReS = 1.03 × 105;
(e) q = +0.693, ReS = 1.04 × 105; (f ) q = +0.333, ReS = 1.05 × 105; (g) q = −0.503,
ReS = 1.05× 105; (h) q=−1.001, ReS = 1.04× 105; (i) q=−1.994, ReS = 1.03× 105.

is linear. Even with the super-rotation, we still have ∂`/∂r > 0 over the parts of
the gap that are resolved, and ` is bound between the specific angular momenta of
the outer cylinder and the axial boundaries at r̃ = 0, which are the locations of the
largest and smallest ` on the axial boundaries respectively. Angular momentum is
transported to the inner cylinder in this regime since the torque on the inner cylinder
is negative (Paoletti & Lathrop 2011). With inward advection of angular momentum
across the gap (there is also the possibility of axial transport), the outer cylinder
and axial boundaries must be the source of angular momentum to sustain the flow
super-rotation against spin down to ω = Ωo. This also allows one to estimate the
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FIGURE 5. (Colour online) Comparison of the normalized angular velocity and specific
angular momentum profiles across the gap for the Keplerian cylinder rotation ratio
(q=+1.500) at three different ReS. (a) The normalized angular velocity ω̃ with the laminar
Taylor–Couette profile drawn for comparison and (b) the specific angular momentum `
normalized by r2

i Ωo with lines for solid-body rotation at the inner and outer cylinder
rotation rates (r2Ωi and r2Ωo respectively). The error bars are smaller than the symbol
heights.
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FIGURE 6. (Colour online) Super-rotating flow strength and locations in the sub-rotating
regime at ReS = 1.04× 105. (a) Flow super-rotation (ω>Ωo >Ωi > 0) strength ω−Ωo at
each q as a percentage of |Ωi−Ωo|, Ωi and Ωo. (b) The radial positions where the profile
crosses ω̃ = 0 (ω = Ωo) to be super-rotating, and the radial position where the super-
rotation is at its maximum (minimum ω̃). Connecting lines are drawn to guide the eye
in both plots.

maximum flow super-rotation that could be seen. If fluid from the outer cylinder
having specific angular momentum `= r2

oΩo is transported to the inner cylinder while
conserving `, it will have an angular velocity ωs = Ωo/η

2. Normalizing the flow
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super-rotation ωs −Ωo respectively by |Ωi −Ωo|, Ωi and Ωo, we obtain

ωs −Ωo

|Ωi −Ωo| 6
(

1− η2

η2

) ∣∣∣∣ 1
η−q − 1

∣∣∣∣ , (4.1)

ωs −Ωo

Ωi
6
(

1− η2

η2

)
ηq, (4.2)

ωs −Ωo

Ωo
6 1− η2

η2
(4.3)

as estimates of the super-rotation upper bound. For our η= 0.716, (1− η2)/η2= 0.95.
The flow super-rotations we see in figure 6(a) are one to two orders of magnitude
smaller than the estimated bounds. As (4.1) diverges as q→ 0, an open question is
whether the magnitude of the flow super-rotation normalized by |Ωi−Ωo| diverges as
q→ 0 at fixed non-zero ReS.

4.2. Quasi-Keplerian angular momentum profile and transport
For all the quasi-Keplerian profiles in figure 4, there is a pattern in the profiles.
Namely, they are split into three regions: an inner region whose angular momentum
profile is nearly flat with a slight positive slope, an outer region where the flow
is nearly in solid-body rotation at Ωo, and a middle transition region in which the
angular momentum profile curves upward from being flat to solid-body rotation at
Ωo. At q= 1.908, the inner region extends over nearly the whole gap. As q decreases
for fixed ReS, the inner region shrinks until for q = 0.333 it is nearly absent, with
the outer region having grown to be almost the whole gap.

As seen in figure 5(b), as ReS is increased, the inner and outer regions appear to
grow while the middle region shrinks. The same pattern is seen going from ReS =
1.03× 105 to ReS= 7.82× 105 for q= 1.909, which is not shown here but can be seen
in the supplementary data. The pattern suggests that in the limit ReS→∞, the middle
region might disappear entirely. If we approximate the inner region as a completely
flat angular momentum profile, approximate the outer region as rotating at exactly Ωo,
ignore any boundary layer on the inner cylinder, and assume that the pattern holds for
the rest of the quasi-Keplerian regime and that no flow state transitions at higher ReS
break it, then the angular velocity profile for the quasi-Keplerian in the asymptotic
limit ReS→∞ regime in our geometry would be

ω(r)=
{
(ri/r)2Ωi for r< rc,

Ωo for r > rc,
(4.4)

with

rc = ri

√
Ωi

Ωo
= ri η

−q/2, (4.5)

r̃c = η

1− η(η
−q/2 − 1), (4.6)

where rc is the transition radius between the flat angular momentum profile and solid-
body rotation at Ωo. For large but finite ReS, (4.4) can serve as an approximate profile.
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FIGURE 7. (Colour online) Radial positions of the minimum in the azimuthal velocity uθ
as a function of q (x-axis) and ReS (different symbols). In the quasi-Keplerian regime, r̃c
from (4.6) is shown for comparison (solid line).

This approximate profile was derived independently by Dunst (1972) by assuming that
the inner region had a flat angular momentum profile, based on his observation of a
well-mixed inner region in his Taylor–Couette experiment.

For the approximately constant specific angular momentum ` = r2ω = ruθ inner
region, ∂uθ/∂r< 0. Then, for the outer regions rotating at approximately Ωi, ∂uθ/∂r>
0. Hence, we can quantify the radial position of the transition region by finding the
radial positions for which the azimuthal velocity profiles uθ(r) are at their minimum.
They are shown in figure 7. In the quasi-Keplerian regime, we find that the position
of the minimum velocity corresponds very well with r̃c in (4.6), giving merit to the
approximate profiles of (4.4). Outside of the quasi-Keplerian regime, the position of
the minimum is located at the inner cylinder for q< 0, and at the outer cylinder for
q> 2.

The approximately flat angular momentum profile in the inner region, when away
from the Rayleigh line where the laminar Taylor–Couette profile is flat, indicates that
the angular momentum is well mixed with advection-dominated transport in the radial
direction. In contrast, there is probably little radial angular momentum transport by
advection or diffusion in the outer region as the profile is close to solid-body at Ωo.
A large amount of angular momentum is transported radially from the inner cylinder
based on the torque measurements from the similar Maryland experiment (Paoletti
& Lathrop 2011) and the upcoming analysis of § 4.3. The large amount of angular
momentum transported off the inner cylinder and mixed in the inner region has to
go somewhere, but the outer region, if present, is probably not transporting much
angular momentum. Then, when an outer region is present such as when q < 2 far
from the Rayleigh line, most of the angular momentum must be transported axially to
the axial boundaries in the inner and possibly middle regions, as shown schematically
in figure 8. As q increases at fixed ReS towards the Rayleigh line, the outer region
disappears and an increasing fraction of the angular momentum can be transported to
the outer cylinder through the middle region instead of being transported to the axial
boundaries. For q> 2, there is no middle region and a boundary layer forms close to
the outer cylinder that steepens with increasing q (van Gils et al. 2012), indicating that
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FIGURE 8. (Colour online) Schematic drawing of the angular momentum transport in
the quasi-Keplerian regime when the axial boundaries are attached to the outer cylinder.
Red dashed lines denote the boundaries between the inner, middle and outer flow regions.
Black arrows denote the transport of angular momentum. The radius and aspect ratios
(η and Γ ) have been changed for visual clarity. Angular momentum is transported radially
off the inner cylinder and then transported axially to the axial boundaries in the inner and
middle regions.

an increasing fraction of the angular momentum is transported to the outer cylinder
instead of to the axial boundaries. Finally, nearly all of the angular momentum is
transported to the outer cylinder.

These features are also seen in wide-gap low-aspect-ratio experiments. Using dye
injection from the inner cylinder, Dunst (1972) found a well-mixed inner region and
a quiescent outer region with poor mixing. In figure 9, the angular velocity and
the specific angular momentum profiles for q ≈ 1.9 from Kageyama et al. (2004),
Schartman et al. (2012) and Edlund & Ji (2014) are compared with each other and
with the results from our apparatus. They all deviate from the laminar Taylor–Couette
profile and show the same three regions with a relatively flat ` close to the inner
cylinder and rotate close to Ωo close to the outer cylinder. However, the relatively
flat ` inner region is offset downward from the specific angular momentum on the
inner cylinder, indicating the presence of a boundary layer on the inner cylinder more
significant than in our experiment. The experiments of Kageyama et al. (2004) and
possibly Edlund & Ji (2014) also exhibit flow sub-rotation (ω < Ωo < Ωi) in the
middle and outer regions. The axial transport of angular momentum and the presence
of three regions in the quasi-Keplerian azimuthal velocity profiles appear to be more
general than just occurring in our specific apparatus with its geometry and ranges of
ReS and q, although the strength of the boundary layer on the inner cylinder appears
to depend on η and/or Γ .

4.3. Torque on the inner cylinder
The velocity gradients near the inner cylinder were larger than in laminar Taylor–
Couette flow, as the ω̃ values at the point closest to the inner cylinder in figures 3
and 5(a) are below that of the laminar Taylor–Couette profile. This steepness means
that the torque on the inner cylinder must be larger than in laminar Taylor–Couette
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FIGURE 9. Comparison of the azimuthal velocimetry for q ≈ 1.9 between different
experiments. This includes our experiment (T3C) with η= 0.716 at q= 1.909 and ReS =
7.82 × 105, Schartman et al. (2012) with η = 0.348 at q = 1.908 and ReS = 5.05 × 105,
Edlund & Ji (2014) with η=0.340 at q=1.803 and ReS=4.34×105, and Kageyama et al.
(2004) with η= 0.255 at q= 1.896 and ReS= 1.30× 106. The profiles for Schartman et al.
(2012) and Edlund & Ji (2014) were constructed by extracting velocities from their figures
(6 and 2 respectively). Kageyama et al. (2004) performed velocimetry at five different
axial heights. Profiles for Kageyama et al. (2004) were constructed by splitting the range
r̃∈ [0, 1] into bins of width 0.02 and averaging the ω within each bin. Normalized angular
velocity ω̃ profiles are compared (a) at full scale and (b) expanded around ω̃ = 0 using
the same symbols to emphasize the parts of the profiles close to rotation at Ωo. Dashed
lines are the laminar Taylor–Couette profiles for each experiment. (c) The specific angular
momentum (`= r2ω) profiles for each experiment side by side with the same horizontal
axes and with vertical axes in the same units. The solid black line (——) and dashed
blue line (– – –) are the specific angular momentum profiles for ω(̃r)=Ωi and ω(̃r)=Ωo
respectively.

flow. If boundary layers were present, the profiles would be even steeper at the inner
cylinder, and thus the torques even larger.

The azimuthal shear stress, when averaged azimuthally, is τ =−ρνr(∂ω/∂r), where
ρ is the fluid density (see p. 48, Landau & Lifshitz 1987). The torque T on a cylinder
of radius r from just the shear stress is Tν = 2πr2Lτ , which in terms of the angular
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velocity is

Tν =−2πρνLr3 ∂ω

∂r
. (4.7)

As laminar Taylor–Couette flow has no Reynolds stresses and ω is uniform over a
cylinder of radius r from (1.4), the total laminar Taylor–Couette torque is

Tlam = 2πρν2Lη
(1− η)2 ReS sign(Rei − ηReo). (4.8)

Assuming a turbulent boundary layer, the thickness y0 of the viscous sublayer on
the inner cylinder is y0 = (ν/u∗)y+0 , where u∗ = √|τ |/ρ is the friction velocity,
ρ is the fluid density and y+0 is the sublayer thickness in dimensionless units
(Schlichting 1979). From measurements in our apparatus for pure inner cylinder
rotation at comparable ReS, y+0 is in the range of 5–10 (Huisman et al. 2013). Then,
for ReS = 105, we get y0 6 2 mm since T > Tlam and y+0 6 10. Since r− ri = 2.6 mm
was the point closest to the inner cylinder where the flow velocity was resolved,
our azimuthal velocimetry did not extend into the viscous sublayer. Due to not
resolving the viscous sublayer, the torque in our apparatus cannot be obtained from
the velocity profiles, meaning that direct comparisons cannot be made with the torque
measurements of Paoletti & Lathrop (2011) from the Maryland experiment with near
identical geometry. However, lower bounds on the torque can be obtained because the
azimuthal profiles can give the shear stress, instead of both the shear and Reynolds
stresses.

To obtain the lower bound for the torque on the inner cylinder, ∂ω/∂r was obtained
from the difference between ω at the point closest to the inner cylinder (r − ri =
2.6 mm which is r̃ = 0.033) and Ωi at the inner cylinder. It must be noted that
the velocity profile was taken at the axial height of one of the small separations in
the inner cylinder, which was 2.5 mm thick, and therefore the gradients in ω we
calculate might be perturbed compared with other axial heights due to the vicinity
to the separation.

The torque lower bounds are listed in table 2. The lower bounds were all larger than
the laminar Taylor–Couette torque, which supports the |T/Tlam| � 1 result of Paoletti
& Lathrop (2011) from the similar Maryland experiment in both regimes for ReS >
3.5 × 105. The measurements in this paper extend this result of Paoletti & Lathrop
(2011) towards solid-body rotation in both regimes.

For the quasi-Keplerian regime, we can use the approximate flatness of the specific
angular momentum profile in the inner region to make an analytical approximate
torque lower bound. Treating the inner region as having a flat specific angular
momentum profile from the inner cylinder with no boundary layer as in (4.4), the
ratio of the torque lower bound Tν,flat to the laminar Taylor–Couette torque is

Tν,flat

Tlam
= 1− η2

1− ηq
for 0< q 6 2. (4.9)

The ratio is always larger than one, approaching one at q= 2. It diverges as q→ 0,
which is due to the width of the inner region shrinking towards zero since rc→ ri
in (4.5). The decrease in rc means that ω changes from Ωi to Ωo over an ever
smaller radial distance, giving a sharper gradient of ω in the inner region, which
becomes infinite as q→ 0. However, if the inner region of a flat angular momentum
profile disappears entirely as q→ 0 at a given ReS, then this lower bound may no
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q ReS Tν/Tlam

1.493 2.07× 104 2.32± 0.05

2.098 1.03× 105 2.99± 0.04
1.908 1.03× 105 2.75± 0.04
1.501 1.03× 105 2.56± 0.05
1.255 1.03× 105 2.49± 0.06
0.693 1.04× 105 3.02± 0.09
0.333 1.05× 105 5.12± 0.18
−0.503 1.05× 105 9.79± 0.12
−1.001 1.04× 105 8.55± 0.06
−1.994 1.03× 105 7.45± 0.04

2.102 7.83× 105 3.66± 0.04
1.909 7.82× 105 3.50± 0.04
1.500 7.79× 105 3.31± 0.05

TABLE 2. The ratios of the lower bounds of the torque on the inner cylinder Tν to the
laminar Taylor–Couette torque Tlam for each set of measurements, ordered by ReS and then
by q.

longer hold. For ReS = 1.04 × 105, the inner region might be close to disappearing
by q = 0.333 based on the angular momentum profiles in figure 4. As the middle
region shrinks with increasing ReS (figure 5b), the q at which the inner region might
disappear decreases with increasing ReS.

The torque lower bounds can be compared with the torque scaling that Paoletti
et al. (2012) fit to the Maryland torque measurements in the Rayleigh-stable and
-unstable regimes (Paoletti & Lathrop 2011) and the torque measurements on the
apparatus presented in this paper in the unstable regime (van Gils et al. 2011b). The
scaling was for the ratio of the torque on the inner cylinder to the torque T+∞ for
pure inner rotation (q = +∞) at the same ReS, which in this paper was obtained
from torque measurements in the very similar Maryland experiment (equation (9) in
Lathrop, Fineberg & Swinney 1992). The lower bounds are compared with the torque
scaling ReS > 3.5× 105 (equation (12) in Paoletti et al. 2012) in figure 10.

As the torque ratios must be positive, the torque scaling must start curving upwards
on the sub-rotating regime side when approaching solid-body rotation at some q >
−1.5 to avoid crossing zero. The three sub-rotating regime torque lower bounds for
ReS = 1.04× 105 give |T|/T+∞ values that are larger than those for ReS > 3.5× 105

(Paoletti et al. 2012). Thus, the |T|/T+∞ scaling of Paoletti et al. (2012) must increase
if extended to ReS = 1.04× 105.

On the quasi-Keplerian side, comparisons can be made between our measurements
at ReS = 7.81 × 105 and those of Paoletti et al. (2012) for ReS > 3.5 × 105. Our
|T|/T+∞ lower bounds from both the measured velocity profiles and the flat inner
region approximation from (4.9) are considerably smaller than those of Paoletti et al.
(2012). As our lower bounds only considered shear stress (diffusion), the difference
in torques on the inner cylinder must be due to Reynolds stresses (advection) in the
region of r̃6 0.033. The divergence of the torque lower bound for the flat inner region
angular momentum approximation as q → 0 suggests that the flat quasi-Keplerian
|T|/T+∞ scaling of Paoletti et al. (2012) will deviate from being flat if extended to
q< 1, unless the inner region disappears or is distorted close to solid-body rotation.
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FIGURE 10. Comparison of inner cylinder torque lower bounds calculated at z/L= 0.209
with the torques measured by Paoletti et al. (2012). Torques are normalized by the torque
for pure inner rotation at the same ReS. The scaling of Paoletti et al. (2012) for ReS >
3.5× 105 is the thick black solid line. The torque ratio lower bounds obtained from the
velocity profiles are the symbols, coded by ReS. The lower bound torques from the quasi-
Keplerian flat inner angular momentum profile approximation in (4.9) for each ReS are
the thin solid lines with the same colours as the symbols, which increase with decreasing
ReS. The error bars are smaller than the symbols.

5. Summary and conclusions
In summary, azimuthal velocity profiles were obtained for several Rayleigh-stable

(and one unstable) cylinder rotation rate ratios for the ranges 2.098 > q > 0.333
and −1.994 6 q 6 −0.503. They were all carried out for ReS = 1.04 × 105, a
few configurations at ReS = 7.81 × 105, and just the Keplerian configuration also
at ReS = 2.07 × 104. For all values of q, the profiles deviate from the laminar
Taylor–Couette profile. The deviation increases as solid-body rotation is approached
(q→0) at fixed non-zero ReS. The deviation consists of a steepening of the normalized
angular velocity ω̃ profile close to the inner cylinder for all q, and the flow in the
outer parts of the gap approaching solid-body rotation with the outer cylinder and
attached axial boundaries for the quasi-Keplerian regime.

For the sub-rotating regime, the flow exhibits super-rotation compared with both
cylinders (ω > Ωo > Ωi), except close to the inner cylinder. As solid-body rotation
is approached at fixed ReS = 1.04 × 105, the strength of the super-rotation increases,
reaching 6 % of Ωo −Ωi for q = −0.503, and the radial positions of the maximum
of super-rotation and where the flow switches from Ωi < ω < Ωo to super-rotation
move closer to the inner cylinder. The flow super-rotation must be sustained by inward
angular momentum transport from the outer cylinder or axial boundaries. To the best
of our knowledge, flow super-rotation for q< 0 has not been previously observed in
the literature. This includes pure outer rotation (q=−∞) in our apparatus (van Gils
et al. 2011a) and in those of Wendt (1933), Taylor (1936b) and Burin & Czarnocki
(2012).

For the quasi-Keplerian regime, the specific angular momentum profiles show that
the flow can be split into three regions across the gap: an inner region where the
angular momentum profile is approximately flat, an outer region where the flow is
close to solid-body rotation at Ωo, and a middle transition region between the two.
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Starting near the Rayleigh line, the middle and outer regions are almost non-existent,
and then as solid-body rotation is approached at fixed non-zero ReS, the inner region
shrinks while the outer region grows until the inner region is almost non-existent
at q = 0.333. As ReS is increased, the middle region shrinks. We speculate that as
ReS → ∞, the middle region will disappear and the profile will converge towards
(4.4) (independently derived from dye injection observations by Dunst 1972). This
model profile is a good approximation by ReS = 7.81 × 105. The outer region, if
present, probably transports little angular momentum, meaning that almost all of the
angular momentum is transported to the axial boundaries. Work is still needed to
check how the mixing is achieved in the inner region and whether the inner region
is turbulent. One must also determine the exact nature of the flow in the middle
and outer regions, and see whether the region pattern is found for other η and Γ .
Measurement of the separate torques on the inner cylinder, outer cylinder and axial
boundaries, or performance of very-high-resolution particle image velocimetry as
Huisman et al. (2012a) did for pure inner rotation on the same apparatus would be
good ways to determine what fraction of the angular momentum goes to the axial
boundaries versus the outer cylinder and elucidate the axial transport mechanism. We
do not see flow sub-rotation in our experiment except possibly for q = 0.693 and
0.333, but ω̃ ≈ 0 within the measurement precision at those q. However, Kageyama
et al. (2004) and possibly Edlund & Ji (2014) found sub-rotating flow for q> 0.

The slope of the angular velocity profile at the inner cylinder is steeper than in
laminar Taylor–Couette flow for both the sub-rotating and the quasi-Keplerian regimes.
Therefore, the torque required to rotate the inner cylinder must be larger than the
laminar Taylor–Couette value, which supports the super-laminar torque measurements
from the geometrically similar Maryland experiment (Paoletti & Lathrop 2011). Due
to not resolving the viscous sublayer on the inner cylinder, only lower bounds for
the torque on the inner cylinder could be obtained via a viscous stress calculation.
The |T|/T+∞ lower bounds from the velocity measurements and the approximate
asymptotic profile were compared with the |T|/T+∞ scaling found by Paoletti et al.
(2012) for ReS > 3.5 × 105. In the sub-rotating regime, their |T|/T+∞ scaling needs
to be increased if extended to ReS = 105 or towards solid-body rotation. In the
quasi-Keplerian regime, the comparison also shows that the bulk of the transport of
angular momentum off the inner cylinder is by Reynolds stresses (advection), and the
|T|/T+∞ scaling of Paoletti et al. (2012) may require modification as q→ 0.

Our velocity profiles provide experimental confirmation of the expectation that the
Ekman pumping from the axial boundaries was what destabilized the flow in the
Maryland experiment, which has a nearly identical geometry to our apparatus, in
the Rayleigh-stable regime, causing large super-laminar torques on the inner cylinder
(Balbus 2011; Avila 2012; Ji & Balbus 2013; Edlund & Ji 2014). This work, combined
with the work of Avila (2012), Schartman et al. (2012) and Edlund & Ji (2014),
resolves the apparent discrepancy between the approximately laminar Taylor–Couette
angular momentum transport in the wide-gap low-aspect-ratio experiments with axial
boundaries split into rings rotating at speeds intermediate to those of the cylinders,
such as the Princeton MRI and HTX experiments (Ji et al. 2006; Schartman et al.
2012; Edlund & Ji 2014), and large super-laminar angular momentum transport
in the medium-gap higher-aspect-ratio Maryland experiment with axial boundaries
attached to the outer cylinder (Paoletti & Lathrop 2011). Moreover, we found that
the Ekman pumping from the axial boundaries does more than just destabilize the
flow in the Rayleigh-stable regime when the axial boundaries are attached to the
outer cylinder. In the quasi-Keplerian regime, it causes the flow to be split radially
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into three regions and nearly all of the angular momentum to be transported to the
axial boundaries instead of the outer cylinder when an outer region is present. The
Ekman pumping essentially causes the axial boundaries to become the primary sink
of angular momentum. In the sub-rotating regime, we discovered flow super-rotation,
which is also probably due to the Ekman pumping.

Astrophysical accretion disks have open axial boundaries, which do not cause
Ekman pumping, and are thought or assumed to have primarily radial transport of
angular momentum (Zeldovich 1981; Richard & Zahn 1999; Richard 2001; Dubrulle
et al. 2005a; Ji & Balbus 2013; Ostilla-Mónico et al. 2014). Due to the strong
Ekman pumping effects, including the primarily axial transport of angular momentum,
Taylor–Couette flow with an aspect ratio up to Γ ∼ 10 with no-slip axial boundaries
attached to the outer cylinder is an imperfect model of accretion disks, especially
with regard to stability. Ideally, one would like to have axial boundaries that are
free-slip or rotate at different rates along their radius such that they match the mean
rotation rate of what the flow would be in the absence of axial boundaries, which
may not be the laminar Taylor–Couette profile.

There are practical options available for experimental Taylor–Couette flow to
mitigate the Ekman pumping and make a better model of accretion disks. One
practical way is to make an experiment where the aspect ratio is great enough that the
axial transport mechanism of the angular momentum saturates and Ekman pumping
can no longer directly affect the flow near midheight. However, tall experiments are
difficult to handle and expensive to make, and work would be needed to ascertain
whether indirect effects would still be a problem. Another way, which has been
followed by the Princeton group (Ji et al. 2006; Schartman et al. 2012; Edlund & Ji
2014), is to split the axial boundaries into rings that are rotated at speeds intermediate
to those of the cylinders. This reduces the strength of the Ekman pumping as well
as better confining it to the axial boundaries. Implementation of the independently
rotating rings is difficult and there is still Ekman pumping due to having only a
finite number of independently rotating rings. If the working fluid is a liquid, the
top boundary can be made into an open boundary by having gas above it, reducing
the Ekman pumping at the top by three orders of magnitude in the case of water
and air, although it does introduce the problem of gravity waves on the top surface.
For the velocities that are used in the present experiments, air could be entrained
by these waves. Similarly, density-mismatched fluids such as mercury and water or
stratification (e.g. salt solutions) can be used on the bottom boundary to confine
the Ekman circulation near the bottom by reducing axial circulation, although this
also introduces the problem of gravity waves and mixing which would destroy the
stratification. In order to accurately represent an accretion disk, one probably has to
combine more than one of these methods.
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