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We investigate the existence of multiple turbulent states in highly turbulent Taylor-
Couette flow in the range of Ta = 10'' to 9 x 10'? by measuring the global torques and
the local velocities while probing the phase space spanned by the rotation rates of the inner
and outer cylinders. The multiple states are found to be very robust and are expected to
persist beyond Ta = 10'3. The rotation ratio is the parameter that most strongly controls
the transitions between the flow states; the transitional values only weakly depend on the
Taylor number. However, complex paths in the phase space are necessary to unlock the
full region of multiple states. By mapping the flow structures for various rotation ratios
in a Taylor-Couette setup with an equal radius ratio but a larger aspect ratio than before,
multiple states are again observed. Here they are characterized by even richer roll structure
phenomena, including an antisymmetrical roll state.
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I. INTRODUCTION

Taylor-Couette (TC) flow, the flow between two coaxial cylinders that can independently rotate,
is one of the paradigmatic systems of physics of fluids. In the past century, a large range of
phenomena and concepts have been studied in this system, such as instabilities, nonlinear dynamics
and spatiotemporal chaos, pattern formation, and turbulence. It has been used extensively as a model
system in fluid dynamics because it is a closed system, has a relatively simple geometry, and therefore
has multiple symmetries. This also means that it is experimentally accessible with high precision. For
a historical overview of Taylor-Couette research, the reader is referred to the work of Donnelly [1],
while the reviews of Di Prima and Swinney [2] and Fardin et al. [3] treat the rich flow structures of
TC flow at the onset of instabilities and slightly above. The state of the art of high-Reynolds-number
Taylor-Couette turbulence is treated by Grossmann et al. [4], which is the regime we focus on in
the present work. Since the research of Wendt [5] and the Austin-Maryland experiments [6—8],
only in the past decade more researchers have started to explore the strongly turbulent regime with
independently rotating cylinders, both experimentally [9—18] and numerically [19-25].

The geometrical parameters of the TC system are the inner and outer cylinder radii »; and r,,
respectively, the gap width d = r, — r;, and the height of the setup L. These can be expressed in
dimensionless form by the radius ratio n = r; /r, and the aspect ratio ' = L /d. The inner and outer
cylinders rotate with angular velocities w; , = 27 f; ,, which can be expressed in dimensionless
form by the Reynolds numbers Re; , = w; o7 ,d /v, where v is the kinematic viscosity, and i and o
subscripts denote quantities related to the inner and outer cylinder, respectively. Using the analogy
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of TC flow with Rayleigh-Bénard convection [26], the driving of the flow can alternatively be
characterized by the Taylor number [27]

1+ m* (ro — ri)2(ri 4 ro)* (@i — w,)?
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combined with the (negative) rotation ratio

Ta

; )

a=-2 2)
w;
with a > 0 for counterrotation and a < 0 for corotation. The response of the system is the torque
T required to sustain constant angular velocity or a Nusselt number [27] Nu,, = T/ Tjaminar, Which is
the angular velocity flux nondimensionalized with the flux of the laminar nonvortical flow.

As we increase the driving strength, we can identify three regimes in Taylor-Couette flow. At
Taylor numbers that are still low (Ta ~ 10°), the gap between the cylinders is filled with coherent
structures called Taylor rolls or Taylor vortices [3,28,29]. When increasing the driving strength (i.e.,
the Taylor number), turbulence starts to develop in the bulk and boundary layers start to develop.
These boundary layers are still of laminar type, and in analogy [26] with Rayleigh-Bénard flow, we
call this regime the classical regime of TC turbulence. In the turbulent bulk, depending on the rotation
ratio a, either the Taylor rolls survive, they partly survive close to the inner cylinder, or the bulk is
featureless [25,30-32]. By further increasing Ta, around Ta ~ 3 x 108, the ultimate regime [33-35]
is reached, in which also the boundary layers are turbulent. It has to be noted that in the transition
to the ultimate regime the bulk characteristics do not change significantly, so in principle the Taylor
rolls can survive.

The question, however, is what happens to the roll structures for even stronger driving, e.g.,
Ta > 10'° or Re > 10°. Visualizations by Lathrop et al. [7] show that for pure inner cylinder
rotation (@ = 0), no clear Taylor vortices are visible for Reynolds numbers beyond Re = 1.2 x 10°.
Also for inner cylinder rotation only, Lewis and Swinney [8] found that vortexlike structures persist
for Reynolds numbers up to Re = 10°. However, for Re > 10° the vortex boundaries drifted axially
and the number of vortices was not well defined. Recently, Huisman ez al. [16] explored the existence
of rolls at high Reynolds number for counterrotating cylinders and found that stable turbulent roll
structures persist at a range of rotation ratios a > 0 (but not a = 0) for very large Taylor numbers
of Ta = 10'? (Re = 10°). At pure inner cylinder rotation, these authors found no roll structures in
the time-averaged azimuthal velocity, consistent with the previous findings. Strikingly, the range of
rotation ratios at which the structures exist corresponds to the a range close to optimal momentum
transport, reflecting that the optimal transport is connected to the existence of the stable large-scale
coherent structures: The Taylor rolls supply the optimal angular velocity transfer from the inner to
the outer cylinder.

The main finding of Huisman et al. [16] was, however, that at these very high Taylor numbers,
multiple states corresponding to different roll structures can exist for the same rotation parameters.
These observed multiple states are stable, i.e., there is no spontaneous switching and there are no
slow transitions between the states. The existence of these multiple turbulent states was unexpected
and questioned Kolmogorov’s paradigm that suggests that for strongly turbulent flows with their
many degrees of freedom and large fluctuations, only one turbulent state would be possible [36,37].

Multiple states have been observed in other geometries, but the nature of the states is generally
different. In the classical regime of Rayleigh-Bénard turbulence, continuous switching between two
different roll states with different heat transfer properties was found [38—40]. At larger Rayleigh
numbers no multiple states were observed in a single setup; only when the boundary conditions were
changed one could trigger transitions [34,41]. However, in rotating Rayleigh-Bénard convection
for Rayleigh numbers up to 2 x 10'2, a sequence of sharp transitions was found as the rotation
rate was increased [42]. For von Karman flow multiple turbulent states were found when driving
it with impellers with curved blades [43—45]. These studies revealed the spontaneous symmetry
breaking and turbulent bifurcations in highly turbulent von K4rmén flow up to Re = 10°. Finally,
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in spherical-Couette flow spontaneous switching between two turbulent states at fixed rotation rates
was observed [46].

In Taylor-Couette flow, multiple states were only observed in the classical regime (see, e.g., [29])
before Huisman et al. [16] showed their existence in the ultimate regime. More recently, multiple
states in TC flow have again been observed, in the transition to the ultimate regime [31] and
beyond [47]. These studies again confirmed that, in the Taylor-Couette geometry, the multiple states
manifest themselves as states with a different number of turbulent rolls, which can create a different
torque on the cylinders. This leads us to the main implication of the existence of multiple states,
which is both fundamental and practical: When extrapolating the known scaling laws for, e.g., the
angular momentum transport, it is essential to be aware of possible transitions between different
turbulent states, which in general possess different values for the torque and the angular momentum
transport.

In their review of high-Reynolds-number TC flow, Grossmann et al. [4] posed questions to be
solved by the scientific community. The following are two of them: When further increasing Ta
to Ta > 10'3, will the large-scale coherent structures (turbulent Taylor rolls) continue to exist? If
so, will multiple turbulent states still coexist, or will the fluctuation be so large that the turbulent
dynamics meanders between these states? These are two questions that we here can begin to answer,
by increasing the maximum Taylor number by almost one order of magnitude to 9 x 10'? and
mapping the (Ta,a) phase space of multiple states.

Additionally, as mentioned by Huisman et al. [16], understanding of the values of a at which the
system transitions between different states is still lacking. By exploring the phase space spanned by
the inner and outer cylinder velocities we will investigate how these transitional a values depend on
the driving strength and what parameter most strongly controls the transitions.

The final question we aim to answer in this work concerns the influence of the aspect ratio of
the system. The multiple states manifest themselves as different roll structures and the aspect ratio
of the Taylor-Couette system directly influences the number of rolls it can support. In this work we
will measure the exact roll structure dependence on the rotation ratio a in a setup with aspect ratio
I' = 18.3 in order to compare the results to previous measurements and to explore the influence of
the aspect ratio on the manifestation of multiple states.

We can summarize these questions into one: How robust are multiple states?

II. SETUPS AND METHODS

The experiments were performed in the Twente Turbulent TC facility (T3C) [48] and the new
Boiling Twente Taylor-Couette facility (BTTC) [49]; see Fig. 1 for a schematic overview. In the
larger T>C setup we are able to reach Taylor numbers of up to Ta = 9 x 10'? and accurately measure
the torque while traversing the phase space of the inner and outer cylinder velocities in order to map
the phase space of multiple turbulent states. The BTTC is designed to study multiphase turbulent
flows, but here we will employ the excellent optical access to perform extensive local velocity
measurements using laser Doppler anemometry. The systems have equal radius ratio n = r; /r, but
different aspect ratio I' = L/d, allowing us to characterize the importance of the aspect ratio with
respect to the behavior of the roll structures, by comparing measurements to the previous work of
Huisman et al. [16]. We will first discuss the experimental details of the torque and laser Doppler
anemometry (LDA) measurements that are performed in the T>C facility, after which we will treat
the LDA measurements in the BTTC setup. Presently, accurate torque measurements are not possible
in the BTTC setup.

The T3C apparatus has an inner cylinder with radius r; =200 mm and a transparent outer
cylinder with inside radius r, = 279.4 mm and a height of L = 927 mm. This gives a radius ratio
of n =r;/r, =0.716 and an aspect ratio of I' = L/(r, — r;) = 11.7. The maximum rotation rates
of the inner and outer cylinders are 20 Hz and 10 Hz, respectively, giving maximum inner and outer
Reynolds numbers of Re; = 2.0 x 10° and Re, = 1.4 x 10° with water at room temperature as the
working fluid. The top and bottom caps are fixed to the outer cylinder. The apparatus is filled with
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FIG. 1. Schematic of the cross section of (a) the T>C [48] and (b) the BTTC [49] setup. (a) The T3C
apparatus is outfitted with a coaxial torque transducer to measure the torque that the fluid exerts on the inner
cylinder. The azimuthal velocity is probed at the middle of the gap and the middle of the height of the apparatus
using laser Doppler anemometry (LDA). (b) In the BTTC apparatus the azimuthal and radial velocities at the
middle of the gap and 0.75 of the height are measured through the transparent top plate using a 45° mirror.
Additionally, a full height scan of the azimuthal velocity is made by traversing the LDA head vertically.

water and actively cooled at the top and bottom plates to keep the temperature constant. Due to
excellent turbulent mixing of the fluid, the spatial temperature variation within the system is less
than 0.1 K.

Huisman et al. [16] found that changes between different roll states manifest themselves as
“jumps” in the torque that acts on the cylinders. The torque is measured on the middle section of
the inner cylinder using a coaxial torque transducer (Honeywell 2404-2K, maximum capacity of
225 Nm). The middle section of the inner cylinder with height z/L = 0.578 does not cover all the
rolls, therefore the exact mean torque value over the entire inner cylinder could be different. This,
however, does not take away the jumps observed in the torque when the flow undergoes transitions
between different roll structures.

The azimuthal velocity is obtained by LDA [see Fig. 1(a)]. The laser beams go through the
outer cylinder and are focused in the middle of the gap. Curvature effects of the outer cylinder on
our LDA system are accounted for by numerically ray tracing the LDA beams [50]. The water is
seeded with 5-pum-diameter polyamide tracer particles (Dantec) with a maximum Stokes number of
St=1,/tx = 0.017 < 1 (with 7, the particle response time and tx the Kolmogorov time scale),
so they can be considered to be good tracers of the flow.

To answer the questions we posed in the Introduction, we measured the torque on the cylinders
while quasistatically traversing the phase space along different types of trajectories shown in Fig. 2.
Specific trajectories such as those of type III were used to find the extent of the phase space in which
multiple states are possible, as will be shown in the results of Sec. III.

We slowly followed the trajectories in phase space by changing the cylinder velocities with
4 Hz/h, found to be slow enough to make acceleration and deceleration effects negligible and give
the system ample time to stabilize into any flow state [16,51]. The beginnings of the trajectories
were reached by spinning the cylinders up to the initial velocities at constant a with 4 Hz/min, after
which the system was kept at these velocities for 5 min to remove any transitional effects. The mean
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FIG. 2. Representative examples of the types of measurement trajectories in the phase space (Ta,a): constant
Ta with decreasing a = — f,,/f; (1) and increasing a (II), constant Ta with a change to different Ta in between
(III), increasing Ta at constant a (IV), fixed f; with decreasing | f,| (Va), fixed f, with increasing | f;| (Vb),
fixed f; with increasing | f,| (Vc), and constant Ta back and forth (VI). For the right axis a temperature of 22 °C
is used to convert from the Taylor number to Af = f; — f,.

water temperature for each run was between 20 °C and 27 °C, while the temperature variation during
each measurement was smaller than 0.5 K. The Taylor number depends on viscosity and thus on
temperature; we therefore removed the main temperature dependence by compensating the Nusselt
number with Ta%*, because Nu,, o« Ta%* in the present parameter regime. This approach has been
followed before; see, for example, Refs. [12,16,51].

We now turn our attention to the BTTC facility [49]. This setup has an inner cylinder with
radius r; = 75 mm and a transparent outer cylinder with inside radius r, = 105 mm, and a height
of L = 549 mm. This gives a radius ratio of n = r;/r, = 0.714, very close to that of the T>C setup,
and an aspect ratio of I' = L/(r, — r;) = 18.3, considerably larger than that of the T3C setup. The
maximum rotation rates of the inner and outer cylinders are again 20 Hz and 10 Hz, respectively,
giving maximum inner and outer Reynolds numbers of Re; = 2.8 x 10° and Re, = 2.0 x 10° with
water at room temperature as the working fluid. The top and bottom caps are fixed to the outer
cylinder. The top plate and outer cylinder are fully transparent, enabling excellent optical access
for optical measurement techniques such as laser Doppler anemometry. The apparatus was filled
with water and actively cooled at the inner cylinder to keep the temperature constant. The spatial
temperature variation within the system is less than 0.1 K.

Two types of LDA measurements were performed in the BTTC setup. The first consisted of
measuring the local velocity at a single point continuously while slowly changing a in order to see
transitions between the multiple states. With the second set of experiments we characterized the roll
structures by performing finely spaced measurements of the velocity over the height of the setup for
several values of a. For each type of measurement, a different way of mounting the LDA system was
employed, as shown in Fig. 1(b). Using a mirror mounted at an angle of 45°, we could measure the
azimuthal and radial velocities in the flow. Although measuring the azimuthal velocity is a good way
of characterizing rolls [16], measuring the radial velocity gives a more direct quantification of the
rolls. We quasistatically traversed the phase space by either decreasing or increasing a while keeping
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the difference in cylinder velocities constant (and so Ta), while simultaneously measuring the two
velocity components with LDA at the middle of the gap and at z/L = 0.75, showing transitions
between different roll states. This was done at Af = f; — f, = 10 Hz, giving a Taylor number
of Ta = 3 x 10'°. Again 5-jum-diameter polyamide tracer particles were used, which here have a
maximum Stokes number of St = 7, /7, = 0.002 < 1.

In addition to these continuous measurements of the velocity, we performed axial scans using
LDA. The LDA head was positioned on a vertical translation stage with the focus at the middle
of the gap (optical effects were again accounted for using a ray tracer). The measurements were
performed in a similar manner as by Huisman ez al. [16] and can be summarized as follows: We spun
the cylinders up to either a = 0 or a = 0.75, acquired velocity data at many points along the height
of the cylinder, slowly changed the velocity to the next value of a, repeated the velocity acquisition,
again slowly changed to the next a, and so forth. At every height the velocity was measured for
20 s, giving approximately 10000 data points each. The axial step size was 1.5 mm and the step
size in a was 0.05, refined to 0.025 around a = 0.4. The measurement height was not traversed
monotonically, but divided in groups of heights, which were measured nonconsecutively. We did so
in order to detect possible slow transitions of the flow, which then would show as discontinuities in
the resulting velocity profiles.

III. PHASE SPACE OF MULTIPLE STATES IN THE T3C SETUP WITHT = 11.7

As observed before [16], different flow states can be triggered by either decreasing (trajectory
type I) or increasing (trajectory type II) the rotation ratio a at constant driving parameter Ta. In this
paper we performed these measurements at several different values of the Taylor number between
Ta= 1.4 x 10" and Ta = 8.8 x 10'?, of which some examples are shown in Fig. 3(a). For the case of
increasing a, the torque is continuous and shows the familiar peak around a = 0.36 [12,14,18,32,51].
However, when a is decreased, the system can enter a state with a lower torque (called low state) ata
certain value a > 0.36, jumping back to a higher-torque state (high state) at a certain value a < 0.36.
This bifurcation is confirmed by measuring the local velocity using laser Doppler anemometry [see
Fig. 3(b)]. The transition to the low state is a probabilistic phenomenon, although the probability is
high (8 out of 10 for trajectories at Af = 8 Hz).

By performing several more measurements with a finely spaced Taylor number it was found that
for the type I and II trajectories of constant Ta, multiple states only appear for Ta > (7.7 £ 0.2) x
10!, We stress that this does not imply anything about the existence or strength of roll structures,
but rather the ability of the system to switch between the different roll structures. Of the two possible
roll states, the eight-roll state corresponding to the high-torque state seems to be more favorable than
the six-roll state corresponding to the low-torque state [16].

From these measurements we can draw two intermediate conclusions, on which we will then
further build. The first is that multiple states still occur for higher Ta than observed before, but also
only beyond a certain high enough threshold Taylor number. The second is that there seems to be a
(weak) dependence of the transitional a values on the Taylor number.

Refer now to Fig. 4, as we make a journey through the trajectories and fill the phase space with
the transitions between the low- and high-torque state. We have already seen that at constant Ta and
increasing a no transitions are present, but for decreasing a we can plot the blue symbols in the
figure. As mentioned, below Ta = (7.7 £ 0.2) x 10! the low state cannot be reached using these
trajectories. We find that by following a type IV trajectory of constant a and increasing Ta, the
system sometimes is in the low state, however with a low probability [16]. To further explore the
boundaries of the multiple states, we follow the recipe of the type III trajectories, by starting ata = 1
and Af = 10 Hz and then reducing a at constant Ta to relatively reliably enter the low state. Then
Ta is reduced at constant a, crossing the line of Ta = 7.7 x 10", after which a is either decreased
or increased. The system stays in the low state until jumping back to the high state at a = 0.15-0.17
and a = 0.53-0.55, respectively. This greatly extends the knowledge of the boundaries of the region
where multiple states are possible. To gather more points at the left boundary of the phase space,
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FIG. 3. Global torque and local velocity versus rotation ratio for several values of Ta, corresponding to
trajectories of types I (blue) and II (red) in Fig. 2. (a) Compensated Nu,, as a function of a, multiplied by
Af = fi — f, to shift the lines for clarity, for Af =4.3,5, 6, 6.5, 7, 8, 10, and 15 Hz (as indicated on the
right). The vertical arrows denote the transitions to the low and high-torque states. (b) Azimuthal velocity
iy = ((ug), — u;)/(u, — u;) measured at r = (r; +r,)/2 and z/L = 0.5 as a function of a.

the Taylor number is also increased to Ta = 8.8 x 10'2, corresponding to a combined Reynolds
number [48] of Re = (w;r; — w,r,)d /v = 2.6 X 10°. Concluding, multiple states are observed for
almost two orders of magnitude in the Taylor number within a well-defined range of rotation ratios.

We wonder whether the transitional a depends on the way one traverses the boundary of the
multiple states. For this, we perform experiments at constant f; or f,, traversing the (Ta,a) phase
space diagonally. Along trajectories of type Va the system undergoes transitions at very similar a
as compared to the other trajectories, confirming the idea that the rotation ratio is the parameter
that controls the inclination of the system to be in either state. By increasing | f;| at constant f,
(trajectory type Vb) the system also undergoes transitions to the low state at the expected value of
a ~ 0.51 (except for 1 out of 5 measurements). This transition, however, is incidentally at a lower
Ta = 6.4 x 10" than the previously observed boundary of Ta = (7.7 & 0.2) x 10'! for trajectories
of constant Ta.

So far we have approached the right boundary in the phase space only from the high state. By
now first traversing it from the right and then reversing the direction of a, we can investigate the
system jumping back to the high state: Does hysteresis of the transition position occur and can we
quantify it? This was done by following trajectories of type VI at several different Taylor numbers.
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FIG. 4. Phase space (Ta,a) showing transitions from the high to the low state by open symbols and transitions
from the low to the high state by closed symbols. The dashed line is at Ta = 7.7 x 10'!, below which the system

does not transition into the low state for trajectories of types I, II, and VI. The colors correspond to those in
Fig. 2.

In the phase space we can see that for most of the measurements the system undergoes transitions
back to the high state slightly later (i.e., at higher a) when increasing a again. In Fig. 5 an example of
a measurement is shown where the direction of a is changed three times. The difference in the value
of a between the jumps back and forth was less than 0.015 here, while in general it was smaller than
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0.45 0.5 0.55 0.6

a

FIG. 5. Global torque signal of one measurement following a type IV trajectory at Af = 15 Hz, decreasing
and increasing a twice, showing hysteresis in the transitional a value. The duration of this part of the
measurement trajectory, from a = 0.45 to 0.60 (and vice versa), is 14 min and 33 s.
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0.030. We conclude that there is some hysteresis, which is only just revealed within the variation of
the jump positions between measurements.

Having filled the phase space, we can now see how the boundaries of the multiple states region
behave. The previously found range of 0.17 < a < 0.51 holds for a large range of Ta and only
widens slightly with decreasing Ta below Ta = 10'2. When looking at the larger values of the Taylor
number, there is no indication of the multiple states region closing up. From this, we expect the
multiple states to exist (far) beyond Ta = 103,

IV. FLOW STRUCTURES IN THE BTTC SETUP WITHT = 18.3

Having shown the dependence of the existence of multiple states on the rotation ratio and
driving strength, we will now turn our attention to another very important parameter: the aspect
ratio I' of the system. It is straightforward to see that the aspect ratio will strongly influence the
roll structures of the system. However, what do the roll structures corresponding to the different
states actually look like? That is what we aim to answer in this section. Huisman et al. [16] have
mapped the roll structures for increasing and decreasing a in the T3C setup, showing that eight-
and six-roll states can exist for an aspect ratio of 11.7, with the six-roll state corresponding to
the nondefault low-torque state. Here we performed similar experiments in the BTTC setup with an
aspect ratio of 18.3, with a finer axial resolution to individually resolve the expected larger number of
rolls.

First, let us look at measurements of the azimuthal velocity at a single positions for both setups
[see Figs. 6(a) and 6(b)]. In both cases the velocity bifurcates, showing very stable multiple states.
For a > 0.51 the velocity fluctuates strongly, which is not suggestive of a stable well-defined flow
state. However, the velocity was measured at the middle of the gap and it could be possible that
coherent structures still existed closer to the inner cylinder [24]. Now, as can be seen in Fig. 6(c),
the radial velocity is a stronger indicator of the multiple states than the azimuthal velocity. While
only two branches were observed, one for increasing a and one for decreasing a, there are strong
jumps of the velocity within these branches. This indicates that more than one state is possible in
either branch.

By performing the aforementioned axial scans of the azimuthal velocity, we saw that this indeed
is the case. Figure 6(d) shows that for a outside [0,0.5] there are no clearly defined structures, but
that within that range, a multitude of states is accessible. To count the number of rolls, we used
the following concept: In between a pair of counterrotating rolls, either high-velocity fluid from the
inner cylinder or low-velocity fluid from the outer cylinder is advected, creating maxima and minima
in the standardized velocity. From this we deduced that one roll sits between every minimum and
maximum. With this knowledge, we counted 12, 13, and 14 rolls for different regions of a, for the
measurement with decreasing a.

The case of increasing a [Fig. 6(e)] also shows a myriad of accessible states, with 13, 14, and
16 rolls. Curiously, for a within the range of [0,0.4] the two branches of increasing and decreasing
a are never in the same roll state, again showing the importance of the history of the system. By
following different trajectories in phase space, one can end up in different states, which are stable
for at least multiple hours. Apparently, information about the history of the flow is not destroyed by
the strong turbulence.

The average aspect ratios of the observed rolls were 1.53, 1.41, 1.31, and 1.14 for 12, 13, 14, and
16 rolls, respectively. The aspect ratios of the rolls observed in the T>C with a smaller system aspect
ratio of I' = 11.7 were 1.96 and 1.46, measured, however, at a larger Taylor number of Ta = 102,
The difference in aspect ratio can be explained by a trend of increasing aspect ratio with Reynolds
number (and Taylor number) [25], although relatively stronger end effects in the T3C setup with
smaller I' could also play a role. The fact that more roll states can be observed in the BTTC setup
can be explained by the smaller energy barrier the system has to overcome to change the roll state.
When adding or removing a single roll in a system with large aspect ratio I, the average roll aspect
ratio changes less than for a system with smaller aspect ratio I'.
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FIG. 6. Local velocity and flow structures. (a) Azimuthal velocity measured in the T°C setup at r =
(ri +7,)/2 and z/L = 0.5 as a function of a for increasing and decreasing a at Ta &~ 10'? (data from [16]).
(b) Azimuthal and (c) radial velocity, respectively, in the BTTC setup at r = (r; +1,)/2 and z/L = 0.75 as
a function of a for increasing and decreasing a at Ta = 3 x 10'°. (d) and (e) Axial scans of the standardized
azimuthal velocity in the BTTC setup as a function of a for (d) decreasing and (e) increasing a at Ta = 3 x 10'°,
The standardized velocity is ity = ((1g); — (Ug).)/0a(uy), Where o, (uy) is the standard deviation of u for each
a and (), stands for averaging over x. The bold numbers indicate the number of rolls the systems contains over
the full height, with the apostrophe denoting a reversed roll direction.
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FIG. 7. Azimuthal velocity profiles at Ta = 3 x 10'° as a function of height z/L for a = 0.375, 0.4, and
0.425, with increasing a. The data are from Fig. 6(e) but here are shown for the full height of the system. The
gray circles with arrows schematically show the rolls and their flow directions. Here the inner cylinder (IC) is
on the left, the outer cylinder (OC) is on the right, and the convention of positive IC rotation is used.

Signs of symmetry-breaking appear in Fig. 6(e) for a in the range [0.2,0.4], where the top roll
slowly changes aspect ratio, previously also observed in the T>C setup. More strikingly, ata = 0.4 a
roll state with an odd number of rolls seems to have appeared, which is very unexpected considering
the symmetric boundary conditions of the system. We will now look into this phenomenon more
closely using Fig. 7. By comparing the cases of @ = 0.375 and a = 0.425, we found that the system
was in the same roll state of 14 vortices for these values of a, however with reversed flow direction
of the rolls. We remind the reader that in this setup the end plates rotate with the outer cylinder and
it can be expected that the preferred roll direction at the boundaries depends on the rotation ratio
a. In between these two cases, at a = 0.4, both states are seemingly not favorable and the system
reacts by first changing (in this particular case) the flow direction of the top roll of the system to
the new boundary condition. Now that the top and bottom rolls rotate in the same direction, only
an odd number of rolls can be supported in the system. This state has the center of the middle roll
at z/L = 0.5, making the term “antisymmetrical” appropriate. Moving on to a = 0.425, also the
bottom roll in the system has adapted, arriving again at the expected symmetrical roll structure. In
the case of decreasing a, the odd 13-roll state can also be observed, although the system does not
revert to the 14-roll state until much later (smaller) a.
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Thus we have observed a stable antisymmetrical strongly turbulent roll structure in a symmetrical
Taylor-Couette setup. More generally, symmetry breaking has been observed before in von Karman
flow with curved propellors [52]. However, in that setup it is directly caused by symmetry breaking
of the boundary conditions due to the curved blades, while in our TC setup the top and bottom
end plates are symmetrical. Additionally, in von Karman flow the system jumps randomly and
spontaneously between the two asymmetrical states, while the symmetry breaking observed here is
stable over time.

V. CONCLUSION

We answer the question we ended the Introduction with: Multiple states in highly turbulent
Taylor-Couette flow are very robust. In this study their existence was observed for a Taylor number
range of almost two decades and it can be expected that they persist for Ta = 10'* and beyond.
Although their existence is robust, to reliably reach the less-likely low-torque state in our T>C setup,
complex paths in phase space may be necessary. When a path of constant Ta (i.e., constant difference
of rotation rates) is taken, a minimum Taylor number of Ta = (7.7 & 0.2) x 10'! is needed to observe
multiple states.

The rotation ratio a is found to be the main control parameter for the transition; only a very
weak dependence of the transitional a values on the Taylor number was observed. Traversing the
boundaries of the phase space with nonconstant a and Ta also does not significantly influence the
transitional a value.

The robustness also reflects in the measurements we performed in a different setup with a larger
aspect ratio. Here the phenomena are even richer, although the same principles hold, namely, that the
system is hysteretic and can be in multiple stable turbulent states for the same driving parameters.
For the larger aspect ratio, the system can be in a larger number of different roll states. Additionally,
in turbulent TC flow, an antisymmetrical roll state with an odd number of rolls has been observed.

A theoretical understanding of the values of a at which the systems transitions between states
remains elusive, although we have shown here that the transitional a values strongly depend on the
aspect ratio of the system. Another interesting opportunity for further research is the probabilistic
nature of the bifurcations.

With this work we have continued the investigation into the manifestation and selectability
of coherent states in highly turbulent flows, which is important for understanding and predicting
large-scale flows in nature and industry.
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